论文标题

晶格交叉的加泰罗尼亚州的系数II:$θ_{a} $的应用 - 状态扩展

Coefficients of Catalan States of Lattice Crossing II: Applications of $Θ_{A}$-state Expansions

论文作者

Dabkowski, Mieczyslaw K., Wu, Cheyu

论文摘要

J.H.如本文所示,当$α$满足其他条件时,拔出多项式因子。我们使用此结果以及我们先前工作中引入的$θ_{a} $ - $ c(a)$ c(a)加泰罗尼亚州$ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ l(m,n)$。特别是,我们表明$ c(a)$因素当$ c $具有具有一些特殊属性的弧线时。在许多情况下,这为计算$ c(a)$而产生了更有效的方法。作为一种应用程序,我们为加泰罗尼亚州$ L(M,3)$的加泰罗尼亚州的系数提供了封闭式公式。

Plucking polynomial of a plane rooted tree with a delay function $α$ was introduced in 2014 by J.H.~Przytycki. As shown in this paper, plucking polynomial factors when $α$ satisfies additional conditions. We use this result and $Θ_{A}$-state expansion introduced in our previous work to derive new properties of coefficients $C(A)$ of Catalan states $C$ resulting from an $m \times n$-lattice crossing $L(m,n)$. In particular, we show that $C(A)$ factors when $C$ has arcs with some special properties. In many instances, this yields a more efficient way for computing $C(A)$. As an application, we give closed-form formulas for coefficients of Catalan states of $L(m,3)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源