论文标题

多模式相关性和湍流的熵

Multi-mode correlations and the entropy of turbulence

论文作者

Falkovich, Gregory, Kadish, Yotam, Vladimirova, Natalia

论文摘要

我们建议湍流研究的新焦点 - 多模式相关性 - 揭示了迄今为止湍流状态的隐藏性质。我们将这种方法应用于描述湍流基本特性的外壳模型。这种模型的家族允许人们研究接近热平衡的湍流,当相互作用时间弱取决于模式数时,这种湍流就会发生。随着模式数量的增加,单模式统计量接近高斯(例如弱湍流),职业数量会增加,而描述能量通量的三模式累积剂保持恒定。但是,我们发现较高的多模式累积剂随阶的增长而增长。我们通过分析得出并通过数值确认这种增长的缩放定律。所有平方无量纲累积物的总和等于完整的多模式分布与独立模式的高斯近似之间的相对熵。我们认为,相对熵可以作为模式数量的对数增长,类似于关键现象中的%互信息和纠缠熵。因此,多模式相关性提供了一种表征湍流状态并将其分为普遍性类别的新方法。

We suggest a new focus for turbulence studies -- multi-mode correlations -- which reveal the hitherto hidden nature of turbulent state. We apply this approach to shell models describing basic properties of turbulence. The family of such models allows one to study turbulence close to thermal equilibrium, which happens when the interaction time weakly depends on the mode number. As the number of modes increases, the one-mode statistics approaches Gaussian (like in weak turbulence), the occupation numbers grow, while the three-mode cumulant describing the energy flux stays constant. Yet we find that higher multi-mode cumulants grow with the order. We derive analytically and confirm numerically the scaling law of such growth. The sum of all squared dimensionless cumulants is equal to the relative entropy between the full multi-mode distribution and the Gaussian approximation of independent modes; we argue that the relative entropy could grow as the logarithm of the number of modes, similar to the %mutual information and entanglement entropy in critical phenomena. Therefore, the multi-mode correlations give a new way to characterize turbulence states and possibly divide them into universality classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源