论文标题
皮肤病变识别具有类层次结构的正则双曲线嵌入
Skin Lesion Recognition with Class-Hierarchy Regularized Hyperbolic Embeddings
论文作者
论文摘要
实际上,许多医疗数据集在疾病标签空间上定义了潜在的分类法。但是,现有的医学诊断分类算法通常假定具有语义独立的标签。在这项研究中,我们旨在利用深度学习算法来利用类层次结构,以更准确,可靠的皮肤病变识别。我们提出了一个双曲线网络,以共同学习图像嵌入和类原型。与欧几里得的几何形状相比,双曲线可证明为层次关系建模提供了一个空间。同时,我们使用从类层次结构编码的距离矩阵限制双曲线原型的分布。因此,学习的原型保留了嵌入空间中的语义类关系,我们可以通过将其特征分配给最近的双曲线类原型来预测图像的标签。我们使用内部皮肤病变数据集,该数据集由65种皮肤疾病的大约230k皮肤镜图像组成,以验证我们的方法。广泛的实验提供了证据表明,与模型相比,我们的模型可以实现更高的精度,而在不考虑班级关系的情况下可以实现更高的严重分类错误。
In practice, many medical datasets have an underlying taxonomy defined over the disease label space. However, existing classification algorithms for medical diagnoses often assume semantically independent labels. In this study, we aim to leverage class hierarchy with deep learning algorithms for more accurate and reliable skin lesion recognition. We propose a hyperbolic network to learn image embeddings and class prototypes jointly. The hyperbola provably provides a space for modeling hierarchical relations better than Euclidean geometry. Meanwhile, we restrict the distribution of hyperbolic prototypes with a distance matrix that is encoded from the class hierarchy. Accordingly, the learned prototypes preserve the semantic class relations in the embedding space and we can predict the label of an image by assigning its feature to the nearest hyperbolic class prototype. We use an in-house skin lesion dataset which consists of around 230k dermoscopic images on 65 skin diseases to verify our method. Extensive experiments provide evidence that our model can achieve higher accuracy with less severe classification errors than models without considering class relations.