论文标题
AGT对应关系,(Q-)Painlevè方程和矩阵模型
AGT correspondence, (q-)Painlevè equations and matrix models
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Painlevè equation for conformal blocks is a combined corollary of integrability and Ward identities, which can be explicitly revealed in the matrix model realization of AGT relations. We demonstrate this in some detail, both for $q$-Painlevè equations for the $q$-Virasoro conformal block, or AGT dual gauge theory in $5d$, and for ordinary Painlevè equations, or AGT dual gauge theory in $4d$. Especially interesting is the continuous limit from $5d$ to $4d$ and its description at the level of equations for eight $τ$-functions. Half of these equations are governed by integrability and another half by Ward identities.