论文标题

3D对象检测中无监督域适应的以观众为中心的表面完成

Viewer-Centred Surface Completion for Unsupervised Domain Adaptation in 3D Object Detection

论文作者

Tsai, Darren, Berrio, Julie Stephany, Shan, Mao, Nebot, Eduardo, Worrall, Stewart

论文摘要

每个自动驾驶数据集都有不同的传感器配置,源自不同的地理区域并涵盖各种情况。结果,3D检测器倾向于过度训练它们的数据集。当对检测器进行训练并在另一个数据集上进行测试时,这会导致准确性急剧下降。我们观察到激光扫描模式差异构成了这种降低性能的很大组成部分。我们通过设计一个新颖的以观看者为中心的表面完成网络(VCN)来完成我们的方法,以在无监督的域适应框架内完成感兴趣的对象表面,从而解决这一点。使用See-VCN,我们获得了跨数据集的对象的统一表示,从而使网络可以专注于学习几何形状,而不是过度拟合扫描模式。通过采用域不变表示,可以将See-VCN归类为一种多目标域适应方法,在该方法中无需注释或重新训练才能获得新的扫描模式的3D检测。通过广泛的实验,我们表明我们的方法在多个域适应设置中优于先前的域适应方法。我们的代码和数据可在https://github.com/darrenjkt/see-vcn上找到。

Every autonomous driving dataset has a different configuration of sensors, originating from distinct geographic regions and covering various scenarios. As a result, 3D detectors tend to overfit the datasets they are trained on. This causes a drastic decrease in accuracy when the detectors are trained on one dataset and tested on another. We observe that lidar scan pattern differences form a large component of this reduction in performance. We address this in our approach, SEE-VCN, by designing a novel viewer-centred surface completion network (VCN) to complete the surfaces of objects of interest within an unsupervised domain adaptation framework, SEE. With SEE-VCN, we obtain a unified representation of objects across datasets, allowing the network to focus on learning geometry, rather than overfitting on scan patterns. By adopting a domain-invariant representation, SEE-VCN can be classed as a multi-target domain adaptation approach where no annotations or re-training is required to obtain 3D detections for new scan patterns. Through extensive experiments, we show that our approach outperforms previous domain adaptation methods in multiple domain adaptation settings. Our code and data are available at https://github.com/darrenjkt/SEE-VCN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源