论文标题

强力磁场中重力波的频率和极化依赖性镜头

Frequency- and polarization-dependent lensing of gravitational waves in strong gravitational fields

论文作者

Oancea, Marius A., Stiskalek, Richard, Zumalacárregui, Miguel

论文摘要

可以通过使用几何光学近似来描述重力波的传播。然而,在整个但有限的频率中,传播受到与几何光学器件的自旋 - 轨道耦合校正的影响,称为重力自旋霍尔效应。因此,重力波遵循略有不同的频率和极化依赖性轨迹,从而导致分散和双向反应现象。我们研究了在分层三重黑洞系统中检测重力自旋效应的潜力,该系统由发射的二元轨道组成,使其充当引力透镜。我们计算到达的时间相对于地球传播的时间差,发现它遵循具有固定指数的频率的简单幂律依赖性。我们计算重力自旋校正的波形及其相对于原始波形的不匹配。如果源,镜头和观察者足够对齐,则波形带有强力磁场的可测量烙印,如果源源与镜头足够接近,则具有通用观察者。我们对GWTC-3的分散时间延迟提出了限制,该延迟是根据违反洛伦兹不变性的限制。最后,我们解决了当前和未来的地面探测器对分散镜头的敏感性。我们的结果表明,可以检测到重力自旋效应,从而提供了一种新颖的一般相对论和紧凑型二元系统的环境。

The propagation of gravitational waves can be described in terms of null geodesics by using the geometrical optics approximation. However, at large but finite frequencies the propagation is affected by the spin-orbit coupling corrections to geometrical optics, known as the gravitational spin Hall effect. Consequently, gravitational waves follow slightly different frequency- and polarization-dependent trajectories, leading to dispersive and birefringent phenomena. We study the potential for detecting the gravitational spin Hall effect in hierarchical triple black hole systems, consisting of an emitting binary orbiting a more massive body acting as a gravitational lens. We calculate the difference in time of arrival with respect to the geodesic propagation and find that it follows a simple power-law dependence on frequency with a fixed exponent. We calculate the gravitational spin Hall-corrected waveform and its mismatch with respect to the original waveform. The waveform carries a measurable imprint of the strong gravitational field if the source, lens, and observer are sufficiently aligned, or for generic observers if the source is close enough to the lens. We present constraints on dispersive time delays from GWTC-3, translated from limits on Lorentz invariance violation. Finally, we address the sensitivity of current and future ground detectors to dispersive lensing. Our results demonstrate that the gravitational spin Hall effect can be detected, providing a novel probe of general relativity and the environments of compact binary systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源