论文标题
学习评估多模式语义本地化的性能
Learning to Evaluate Performance of Multi-modal Semantic Localization
论文作者
论文摘要
语义本地化(SELO)是指使用语义信息(例如文本)在大规模遥感(RS)图像中获得最相关位置的任务。作为基于跨模式检索的新兴任务,Selo仅使用字幕级注释来实现语义级检索,这在统一下游任务方面表现出了巨大的潜力。尽管Selo已连续执行,但目前没有工作正在系统地探索和分析这个紧急方向。在本文中,我们彻底研究了这一领域,并在指标和测试数据数据方面提供了完整的基准,以推进SELO任务。首先,基于此任务的特征,我们提出了多个判别评估指标来量化SELO任务的性能。设计的显着面积比例,注意力转移距离和离散的注意距离可用于评估从像素级别和区域级别中产生的SELO图。接下来,为了为SELO任务提供标准评估数据,我们贡献了多种多样的,多语义的,多目标语义定位测试集(AIR-SLT)。 AIR-SLT由22个大型RS图像和59个具有不同语义的测试用例组成,旨在为检索模型提供全面的评估。最后,我们详细分析了RS跨模式检索模型的SELO性能,探索不同变量对此任务的影响,并为SELO任务提供了完整的基准测试。我们还建立了一个新的范式,用于RS参考表达理解,并通过将其与检测和道路提取等任务相结合,证明了Selo在语义中的巨大优势。拟议的评估指标,语义本地化测试集和相应的脚本已在github.com/xiaoyuan1996/semanticlocalizationmetrics上访问。
Semantic localization (SeLo) refers to the task of obtaining the most relevant locations in large-scale remote sensing (RS) images using semantic information such as text. As an emerging task based on cross-modal retrieval, SeLo achieves semantic-level retrieval with only caption-level annotation, which demonstrates its great potential in unifying downstream tasks. Although SeLo has been carried out successively, but there is currently no work has systematically explores and analyzes this urgent direction. In this paper, we thoroughly study this field and provide a complete benchmark in terms of metrics and testdata to advance the SeLo task. Firstly, based on the characteristics of this task, we propose multiple discriminative evaluation metrics to quantify the performance of the SeLo task. The devised significant area proportion, attention shift distance, and discrete attention distance are utilized to evaluate the generated SeLo map from pixel-level and region-level. Next, to provide standard evaluation data for the SeLo task, we contribute a diverse, multi-semantic, multi-objective Semantic Localization Testset (AIR-SLT). AIR-SLT consists of 22 large-scale RS images and 59 test cases with different semantics, which aims to provide a comprehensive evaluations for retrieval models. Finally, we analyze the SeLo performance of RS cross-modal retrieval models in detail, explore the impact of different variables on this task, and provide a complete benchmark for the SeLo task. We have also established a new paradigm for RS referring expression comprehension, and demonstrated the great advantage of SeLo in semantics through combining it with tasks such as detection and road extraction. The proposed evaluation metrics, semantic localization testsets, and corresponding scripts have been open to access at github.com/xiaoyuan1996/SemanticLocalizationMetrics .