论文标题

重新启动的通用性能范围

Universal performance bounds of restart

论文作者

Starkov, Dmitry, Belan, Sergey

论文摘要

正如计算机科学家长期以来所知道的那样,可以通过应用重新启动,即对随机计算程序的情节中断,然后初始化其新的统计独立实现的初始化,从而改善了以相对较大的运行时波动为特征的概率算法的性能。在酶促反应的背景下,重新启动诱导的过程加速度的类似作用可能是可能的,在酶促反应的背景下,酶 - 底物中间体的解离对应于重新启动反应的催化步骤。迄今为止,关于重新启动对各种模型问题的完成时间统计的影响,已经在物理和计算机科学中获得了大量的分析结果,但是,重新启动效率的基本限制仍然未知。在这里,我们得出了一系列通用的统计不平等,这些不平等现象对重新启动可能对通用随机过程的完成时间施加的效果产生限制。相应的界限是通过原始过程的简单统计指标(例如谐波平均值$ h $,中值$ m $和模式$ m $)表示的,因此非常实用。我们通过多个数值示例测试我们的分析预测,讨论由它们产生的含义以及未来工作的重要途径。

As has long been known to computer scientists, the performance of probabilistic algorithms characterized by relatively large runtime fluctuations can be improved by applying a restart, i.e., episodic interruption of a randomized computational procedure followed by initialization of its new statistically independent realization. A similar effect of restart-induced process acceleration could potentially be possible in the context of enzymatic reactions, where dissociation of the enzyme-substrate intermediate corresponds to restarting the catalytic step of the reaction. To date, a significant number of analytical results have been obtained in physics and computer science regarding the effect of restart on the completion time statistics in various model problems, however, the fundamental limits of restart efficiency remain unknown. Here we derive a range of universal statistical inequalities that offer constraints on the effect that restart could impose on the completion time of a generic stochastic process. The corresponding bounds are expressed via simple statistical metrics of the original process such as harmonic mean $h$, median value $m$ and mode $M$, and, thus, are remarkably practical. We test our analytical predictions with multiple numerical examples, discuss implications arising from them and important avenues of future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源