论文标题

通过多次审议的自动评论生成

Automatic Comment Generation via Multi-Pass Deliberation

论文作者

Mu, Fangwen, Chen, Xiao, Shi, Lin, Wang, Song, Wang, Qing

论文摘要

审议是人类日常生活中的共同自然行为。例如,在撰写论文或文章时,我们通常会首先编写草稿,然后迭代地擦亮它们,直到满足为止。鉴于这种人类的认知过程,我们提出了Decom,这是自动评论的多通审议框架。 DECOM由多个审议模型和一个评估模型组成。给定代码段,我们首先从代码中提取关键字,然后从预定义的语料库中检索类似的代码片段。然后,我们将检索到的代码的评论视为初始草案,并将其输入代码和关键词将其输入DETOM,以开始迭代审议过程。在每次审议时,审议模型都会抛光草案并产生新的评论。评估模型衡量了新生成的评论的质量,以确定是否结束迭代过程。终止迭代过程后,将选择最佳的评论作为目标评论。我们的方法在Java(87K)和Python(108K)的两个现实世界数据集上进行了评估,实验结果表明,我们的方法表现优于最先进的基准。人类评估研究还证实,DECOM产生的评论往往更可读性,信息性和有用。

Deliberation is a common and natural behavior in human daily life. For example, when writing papers or articles, we usually first write drafts, and then iteratively polish them until satisfied. In light of such a human cognitive process, we propose DECOM, which is a multi-pass deliberation framework for automatic comment generation. DECOM consists of multiple Deliberation Models and one Evaluation Model. Given a code snippet, we first extract keywords from the code and retrieve a similar code fragment from a pre-defined corpus. Then, we treat the comment of the retrieved code as the initial draft and input it with the code and keywords into DECOM to start the iterative deliberation process. At each deliberation, the deliberation model polishes the draft and generates a new comment. The evaluation model measures the quality of the newly generated comment to determine whether to end the iterative process or not. When the iterative process is terminated, the best-generated comment will be selected as the target comment. Our approach is evaluated on two real-world datasets in Java (87K) and Python (108K), and experiment results show that our approach outperforms the state-of-the-art baselines. A human evaluation study also confirms the comments generated by DECOM tend to be more readable, informative, and useful.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源