论文标题

基准和基线,用于稳健的多视图深度估计

A Benchmark and a Baseline for Robust Multi-view Depth Estimation

论文作者

Schröppel, Philipp, Bechtold, Jan, Amiranashvili, Artemij, Brox, Thomas

论文摘要

最新的深度学习方法用于多视图深度估计,在深度视频或多视图立体设置中采用。尽管设置不同,但这些方法在技术上是相似的:它们将多个源视图与关键视图相关联,以估算密钥视图的深度图。在这项工作中,我们介绍了强大的多视图深度基准,该基准构建在一组公共数据集上,并允许对来自不同域的数据进行评估。我们评估了最近的方法,并发现跨领域的性能不平衡。此外,我们考虑使用第三个设置,其中可用相机姿势,目的是用其正确的尺度估算相应的深度图。我们表明,最近的方法在这种情况下不会跨数据集概括。这是因为它们的成本量输出不足。为了解决这一问题,我们介绍了多视图深度估计的强大MVD基线模型,该模型构建在现有组件上,但采用了新颖的规模增强程序。它可以应用于与目标数据无关的强大多视图深度估计。我们在https://github.com/lmb-freiburg/robustmvd上为建议的基准模型提供了代码。

Recent deep learning approaches for multi-view depth estimation are employed either in a depth-from-video or a multi-view stereo setting. Despite different settings, these approaches are technically similar: they correlate multiple source views with a keyview to estimate a depth map for the keyview. In this work, we introduce the Robust Multi-View Depth Benchmark that is built upon a set of public datasets and allows evaluation in both settings on data from different domains. We evaluate recent approaches and find imbalanced performances across domains. Further, we consider a third setting, where camera poses are available and the objective is to estimate the corresponding depth maps with their correct scale. We show that recent approaches do not generalize across datasets in this setting. This is because their cost volume output runs out of distribution. To resolve this, we present the Robust MVD Baseline model for multi-view depth estimation, which is built upon existing components but employs a novel scale augmentation procedure. It can be applied for robust multi-view depth estimation, independent of the target data. We provide code for the proposed benchmark and baseline model at https://github.com/lmb-freiburg/robustmvd.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源