论文标题
延迟系统中的中部属性:对具有中间多重性的光谱值的见解
MID Property for Delay Systems: Insights on Spectral Values with Intermediate Multiplicity
论文作者
论文摘要
本文重点介绍了一类以延迟差异方程为代表的线性时间不变系统的多样性引起的支配性(MID)。如果在Kummer高几何函数的根部特性方面表征了通用中间的问题,则中间MID的情况仍然是一个开放的问题。本文的目的是通过使用绿色 - 希尔转化来表征Kummer函数线性组合的非肌电零的分布来解决此类问题。一个说明性的例子完成了演示文稿,并显示了所提出的方法的有效性。
This paper focuses on the problem of multiplicity induced dominancy (MID) for a class of linear time-invariant systems represented by delay-differential equations. If the problem of generic MID was characterized in terms of properties of the roots of Kummer hypergeometric functions, the case of intermediate MID is still an open problem. The aim of this paper is to address such a problem by using the Green--Hille transformation for characterizing the distribution of the nonasymptotic zeros of linear combinations of Kummer functions. An illustrative example completes the presentation and shows the effectiveness of the proposed methodology.