论文标题
球形恒星系统中的新偶极子不稳定性
New dipole instabilities in spherical stellar systems
论文作者
论文摘要
球形恒星系统具有弱阻尼的响应模式。偶极模式是Seiche模式。四极是零图案速度悬垂模式,是径向轨道不稳定性(ROI)的稳定前体。我们证明,分布函数(DF)中的小摆动可以破坏偶极模式,并描述NFW状的黑暗晕圈(DM)Halos和其他幂律球形系统中新近识别的不稳定性。使用多元奇异频谱分析(MSSA)在N体模拟中鉴定了模式,并使用线性反应理论进行了证实。新模式在半质量半径内达到峰值,但具有典型的外部半径轨道的图案速度。随着它的生长,构成模式的偏心轨道的径向角度相关,并通过谐振夫妇与外部途径失去角动量。这导致了一个不稳定的图案,并具有密度增强,从直径从光环的一侧转动到另一侧,例如构成不稳定性的轨道。这样,偶极模式与ROI相似。由于在自然界中发现的DF不太可能是平滑的和各向同性的,而对于Antonov稳定性所需的$ df(e)/de <0 $,因此这些模式可能无处不在。与NFW相比,诸如Hernquist模型之类的HALOS往往稳定这种偶极子不稳定。我们介绍了一个和两功率模型的关键稳定性指数。这些不同的关键外部幂律指数表明,内部和外部DM光环之间的重力耦合取决于密度曲线的整体形状。
Spherical stellar systems have weakly-damped response modes. The dipole modes are seiche modes. The quadrupole are zero pattern-speed prolate modes, the stable precursors to the radial-orbit instability (ROI). We demonstrate that small wiggles in the distribution function (DF) can destabilise the dipole modes and describe the newly identified instabilities in NFW-like dark-matter (DM) halos and other power-law spherical systems. The modes were identified in N-body simulations using multivariate singular spectrum analysis (MSSA) and corroborated using linear-response theory. The new mode peaks inside the half-mass radius but has a pattern speed typical of an outer-halo orbit. As it grows, the radial angle of the eccentric orbits that make up the mode correlate and lose angular momentum by a resonant couple to outer-halo orbits. This leads to an unsteady pattern with a density enhancement that swings from one side of the halo to another along a diameter, like the orbits that comprise the instability. In this way, the dipole mode is similar to the ROI. Since the DF found in Nature is unlikely to be smooth and isotropic with $df(E)/dE<0$ necessary for Antonov stability, these modes may be ubiquitous albeit slowly growing. Halos that are less extended than NFW, such as the Hernquist model, tend to be stable to this dipole instability. We present the critical stability exponents for one- and two-power models. These different critical outer power-law exponents illustrate that the gravitational coupling between the inner and outer DM halo depends on the global shape of density profile.