论文标题

具有半球专业化的双侧大脑中的深度学习

Deep learning in a bilateral brain with hemispheric specialization

论文作者

Rajagopalan, Chandramouli, Rawlinson, David, Goldberg, Elkhonon, Kowadlo, Gideon

论文摘要

地球上所有双侧对称动物的大脑分为左右半球。半球的解剖学和功能具有很大程度的重叠,但存在不对称性,它们专门研究不同的属性。其他作者已经使用计算模型来模仿半球不对称,重点是再现有关语义和视觉处理任务的人类数据。我们采用了另一种方法,并旨在了解双边架构中的双半球在给定任务中表现良好。我们提出了一个双边人工神经网络,该网络模仿自然界观察到的横向化:左半球专门研究本地特征,而在全球特征中则右侧是右边的。我们使用了不同的培训目标来实现所需的专业化,并在具有两个不同CNN骨架的图像分类任务上对其进行了测试:Resnet和VGG。我们的分析发现,半球代表了由网络头部利用的互补特征,该特征由网络头部实现一种加权注意力。双边体系结构的表现优于一系列相似的代表能力基线,这些基线无法利用差异化专业化,除了传统的单方面网络集合,该集合对本地和全球功能进行了双重培训目标培训。结果证明了双边主义的功效,有助于对生物学大脑的双边主义讨论,该原理可以作为新的AI系统的归纳偏见。

The brains of all bilaterally symmetric animals on Earth are divided into left and right hemispheres. The anatomy and functionality of the hemispheres have a large degree of overlap, but there are asymmetries, and they specialise in possesses different attributes. Other authors have used computational models to mimic hemispheric asymmetries with a focus on reproducing human data on semantic and visual processing tasks. We took a different approach and aimed to understand how dual hemispheres in a bilateral architecture interact to perform well in a given task. We propose a bilateral artificial neural network that imitates lateralisation observed in nature: that the left hemisphere specialises in local features and the right in global features. We used different training objectives to achieve the desired specialisation and tested it on an image classification task with two different CNN backbones: ResNet and VGG. Our analysis found that the hemispheres represent complementary features that are exploited by a network head that implements a type of weighted attention. The bilateral architecture outperformed a range of baselines of similar representational capacity that do not exploit differential specialisation, with the exception of a conventional ensemble of unilateral networks trained on dual training objectives for local and global features. The results demonstrate the efficacy of bilateralism, contribute to the discussion of bilateralism in biological brains, and the principle may serve as an inductive bias for new AI systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源