论文标题

具有边界规律性和分散效果的2D Inviscid Boussinesq方程的长期可溶性

Long-time solvability for the 2D inviscid Boussinesq equations with borderline regularity and dispersive effects

论文作者

Angulo-Castillo, Vladimir, Ferreira, Lucas C. F., Kosloff, Leonardo

论文摘要

我们关注的是,较大类的初始数据的2D Inviscid Boussinesq方程的长期可溶性,该数据涵盖了边界规律性的情况。首先,我们相对于与流体分层相关的参数$κ$均匀地显示了BESOV空间中的局部溶解度。之后,采用爆炸标准和Strichartz型估计值,无论初始数据的大小如何,都可以为大$κ$获得长期的可溶性。

We are concerned with the long-time solvability for 2D inviscid Boussinesq equations for a larger class of initial data which covers the case of borderline regularity. First we show the local solvability in Besov spaces uniformly with respect to a parameter $κ$ associated with the stratification of the fluid. Afterwards, employing a blow-up criterion and Strichartz-type estimates, the long-time solvability is obtained for large $κ$ regardless of the size of initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源