论文标题
具有边界规律性和分散效果的2D Inviscid Boussinesq方程的长期可溶性
Long-time solvability for the 2D inviscid Boussinesq equations with borderline regularity and dispersive effects
论文作者
论文摘要
我们关注的是,较大类的初始数据的2D Inviscid Boussinesq方程的长期可溶性,该数据涵盖了边界规律性的情况。首先,我们相对于与流体分层相关的参数$κ$均匀地显示了BESOV空间中的局部溶解度。之后,采用爆炸标准和Strichartz型估计值,无论初始数据的大小如何,都可以为大$κ$获得长期的可溶性。
We are concerned with the long-time solvability for 2D inviscid Boussinesq equations for a larger class of initial data which covers the case of borderline regularity. First we show the local solvability in Besov spaces uniformly with respect to a parameter $κ$ associated with the stratification of the fluid. Afterwards, employing a blow-up criterion and Strichartz-type estimates, the long-time solvability is obtained for large $κ$ regardless of the size of initial data.