论文标题
SQL和NOSQL数据库软件架构绩效分析和评估 - 系统文献综述
SQL and NoSQL Databases Software architectures performance analysis and assessments -- A Systematic Literature review
论文作者
论文摘要
上下文:大数据的有效处理是SQL和NOSQL数据库的一项具有挑战性的任务,在该数据库中,有效的软件体系结构起着至关重要的作用。 SQL数据库设计用于构建数据和支持垂直可扩展性。相反,水平可伸缩性由NOSQL数据库支持,并且可以有效地处理较大的非结构化数据。可以根据组织的需求选择正确的范式;但是,做出正确的选择通常可能具有挑战性。 SQL和NOSQL数据库遵循不同的体系结构。同样,混合模型之后是NOSQL数据库的每个类别。因此,对于多个云服务提供商(CSP)的云消费者来说,数据移动变得困难。此外,每个云平台IAAAS,PAAS,SaaS和DBAAS还监视各种范式。目的:该系统文献综述(SLR)旨在研究与SQL和NOSQL数据库软件体系结构相关的相关文章,并解决各种云平台之间的数据可移植性和互操作性。最新的状态通过观察缩放,性能,可用性,一致性和碎片特征,介绍了SQL和NOSQL数据库的许多性能比较研究。根据研究研究,NOSQL数据库设计的结构可以是大数据分析的正确选择,而SQL数据库适合OLTP数据库。研究人员提出了许多与云中数据流动相关的方法。开发了基于平台的API,这使用户的数据移动变得困难。因此,在跨多个CSP的数据移动期间,数据可移植性和互操作性问题都会发现。为了最大程度地减少开发人员的努力和互操作性,要求统一的API使数据移动在各种云平台之间相对易于访问。
Context: The efficient processing of Big Data is a challenging task for SQL and NoSQL Databases, where competent software architecture plays a vital role. The SQL Databases are designed for structuring data and supporting vertical scalability. In contrast, horizontal scalability is backed by NoSQL Databases and can process sizeable unstructured Data efficiently. One can choose the right paradigm according to the organisation's needs; however, making the correct choice can often be challenging. The SQL and NoSQL Databases follow different architectures. Also, the mixed model is followed by each category of NoSQL Databases. Hence, data movement becomes difficult for cloud consumers across multiple cloud service providers (CSPs). In addition, each cloud platform IaaS, PaaS, SaaS, and DBaaS also monitors various paradigms. Objective: This systematic literature review (SLR) aims to study the related articles associated with SQL and NoSQL Database software architectures and tackle data portability and Interoperability among various cloud platforms. State of the art presented many performance comparison studies of SQL and NoSQL Databases by observing scaling, performance, availability, consistency and sharding characteristics. According to the research studies, NoSQL Database designed structures can be the right choice for big data analytics, while SQL Databases are suitable for OLTP Databases. The researcher proposes numerous approaches associated with data movement in the cloud. Platform-based APIs are developed, which makes users' data movement difficult. Therefore, data portability and Interoperability issues are noticed during data movement across multiple CSPs. To minimize developer efforts and Interoperability, Unified APIs are demanded to make data movement relatively more accessible among various cloud platforms.