论文标题
桥接隐式和明确的几何变换单图像综合
Bridging Implicit and Explicit Geometric Transformation for Single-Image View Synthesis
论文作者
论文摘要
从单个图像中创造出新颖的视野已通过高级自回归模型取得了长足的进步,因为必须从可见的场景内容中推断出看不见的区域。尽管最近的方法产生了高质量的新颖观点,但仅使用一个明确或隐式的3D几何形状合成在两个目标之间取决于我们称为“ Seeesaw”问题的权衡:1)保留重新注射的内容和2)完成现实视图。此外,自回归模型需要相当大的计算成本。在本文中,我们提出了一个单图视图综合框架,用于减轻Seesaw问题,同时利用有效的非自动进程模型。由明确方法很好地保留重新注射的像素和隐式方法的特征的动机,我们引入了一个损失函数,以补充两个渲染器。我们的损失功能促进了显式功能改善隐性功能的重新注射区域,而隐式功能改善了显式特征的视角领域。借助提出的架构和损失功能,我们可以减轻SEESAW问题,表现优于自回归的最新方法,并生成图像$ \ $ \ $ \ $ 100倍。我们通过对RealEstate10K和酸数据集的实验来验证方法的效率和有效性。
Creating novel views from a single image has achieved tremendous strides with advanced autoregressive models, as unseen regions have to be inferred from the visible scene contents. Although recent methods generate high-quality novel views, synthesizing with only one explicit or implicit 3D geometry has a trade-off between two objectives that we call the "seesaw" problem: 1) preserving reprojected contents and 2) completing realistic out-of-view regions. Also, autoregressive models require a considerable computational cost. In this paper, we propose a single-image view synthesis framework for mitigating the seesaw problem while utilizing an efficient non-autoregressive model. Motivated by the characteristics that explicit methods well preserve reprojected pixels and implicit methods complete realistic out-of-view regions, we introduce a loss function to complement two renderers. Our loss function promotes that explicit features improve the reprojected area of implicit features and implicit features improve the out-of-view area of explicit features. With the proposed architecture and loss function, we can alleviate the seesaw problem, outperforming autoregressive-based state-of-the-art methods and generating an image $\approx$100 times faster. We validate the efficiency and effectiveness of our method with experiments on RealEstate10K and ACID datasets.