论文标题

高级自由谎言代数的均匀性

Uniformity in Higher class Free Lie algebras

论文作者

Sautoy, Marcus du, Lee, Seungjai

论文摘要

令$ \ mathfrak {f} _ {c,2} $表示免费的class- $ c $ lie lies戒指$ 2 $生成器。我们研究了$ \ mathfrak {f} _ {c,2}(\ mathbb {f} _p)$ in $ c \ leq6 $中的ZETA函数,以$ c \ leq5 $ c $ c \ c \ leq5 $ c = $ c = $ c $ c = for $ c yous p $ cy n yous p $ cy n of p $ c。我们还表明,Zeta函数列举一步分级的理想$ \ mathfrak {f} _ {c,2}(\ Mathbb {f} _p)$始终由$ p $在所有$ c $的$ p $中给出。

Let $\mathfrak{f}_{c,2}$ denote a free class-$c$ Lie rings on $2$ generators. We investigate the zeta functions enumerating graded ideals in $\mathfrak{f}_{c,2}(\mathbb{F}_p)$ for $c\leq6$, prove that they are uniformly given by polynomials in $p$ for $c\leq5$ and not uniformly given by a polynomial in $p$ for $c=6$. We also show that the zeta functions enumerating one-step graded ideals $\mathfrak{f}_{c,2}(\mathbb{F}_p)$ is always given by a polynomial in $p$ for all $c$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源