论文标题
用于机器学习支持的软件系统的MDE:案例研究和比较Montianna&ML-Quadrat
MDE for Machine Learning-Enabled Software Systems: A Case Study and Comparison of MontiAnna & ML-Quadrat
论文作者
论文摘要
在本文中,我们建议采用MDE范式来开发机器学习(ML)支持的软件系统,重点是物联网(IoT)域。我们说明了如何将两种最先进的开源建模工具,即蒙蒂安娜(Montianna)和ML-Quadrat用于此目的。案例研究说明了使用ML的ML使用ML的ML图像识别手写数字的自动图像识别,并使用MNIST参考数据集进行了自动图像识别,并将机器学习组件集成到物联网系统中。随后,我们对两个框架进行了功能比较,设置了一个分析基础,以包括广泛的设计考虑因素,例如问题域,ML集成到较大的系统中的方法以及支持的ML方法,以及ML社区最近强烈兴趣的主题,例如自动群体和MLOPS。因此,本文的重点是阐明ML域中MDE方法的潜力。这支持ML工程师开发(ML/软件)模型,而不是实施代码,并通过启用ML功能作为IoT或网络物理系统的组件的现成集成来实现设计的可重复性和模块化。
In this paper, we propose to adopt the MDE paradigm for the development of Machine Learning (ML)-enabled software systems with a focus on the Internet of Things (IoT) domain. We illustrate how two state-of-the-art open-source modeling tools, namely MontiAnna and ML-Quadrat can be used for this purpose as demonstrated through a case study. The case study illustrates using ML, in particular deep Artificial Neural Networks (ANNs), for automated image recognition of handwritten digits using the MNIST reference dataset, and integrating the machine learning components into an IoT system. Subsequently, we conduct a functional comparison of the two frameworks, setting out an analysis base to include a broad range of design considerations, such as the problem domain, methods for the ML integration into larger systems, and supported ML methods, as well as topics of recent intense interest to the ML community, such as AutoML and MLOps. Accordingly, this paper is focused on elucidating the potential of the MDE approach in the ML domain. This supports the ML engineer in developing the (ML/software) model rather than implementing the code, and additionally enforces reusability and modularity of the design through enabling the out-of-the-box integration of ML functionality as a component of the IoT or cyber-physical systems.