论文标题
a $(d_τ,d_x)$ - $ n $ - 相关因子$ n_t $ -objects
A $(D_τ,D_x)$-manifold with $N$-correlators of $N_t$-objects
论文作者
论文摘要
在本文中,我们描述了$(d_τ,d_x)$的数学形式主义 - 具有$ n $ - 相关器的$ n_t $类型对象的对象,具有互相关和污染物。特别是,我们使用简单的数学物理学,现场理论,拓扑,代数,统计n-correlator和傅立叶变换来构建这种形式主义。我们讨论了这种形式主义在宇宙学量表的适用性,即从天文量表到量子量表,为此我们提供了一些直观的例子。
In this paper, we describe a mathematical formalism for a $(D_τ,D_x)$-dimensional manifold with $N$-correlators of $N_t$ types of objects, with cross correlations and contaminants. In particular, we build this formalism using simple notions of mathematical physics, field theory, topology, algebra, statistics n-correlators and Fourier transform. We discuss the applicability of this formalism in the context of cosmological scales, i.e. from astronomical scales to quantum scales, for which we give some intuitive examples.