论文标题
通过部分衍生物进行非参数估计
Nonparametric Estimation via Partial Derivatives
论文作者
论文摘要
传统的非参数估计方法通常会导致较大维度的收敛速度缓慢,并且需要不切实际的数据集大小来获得可靠的结论。我们开发了一种基于观察或估计的部分导数的方法,以有效地估计近乎参数收敛速率的功能。新颖的方法和计算算法可能会导致对科学和工程许多领域的从业者有用的方法。我们的理论结果揭示了这类非参数估计问题的普遍行为。我们探索涉及张量产品空间的一般设置,并基于方差(SS-ANOVA)框架的平滑样条分析。对于$ d $维模型,在完全交互的情况下,具有$ p $协变量的梯度信息的最佳速率与$(d-p)$ - 互动模型的梯度相同,因此,这些模型不受“互动诅咒”的影响。对于加性模型,使用梯度信息的最佳速率是根$ n $,因此实现了“参数率”。我们通过合成和真实数据应用来证明理论结果的各个方面。
Traditional nonparametric estimation methods often lead to a slow convergence rate in large dimensions and require unrealistically enormous sizes of datasets for reliable conclusions. We develop an approach based on partial derivatives, either observed or estimated, to effectively estimate the function at near-parametric convergence rates. The novel approach and computational algorithm could lead to methods useful to practitioners in many areas of science and engineering. Our theoretical results reveal a behavior universal to this class of nonparametric estimation problems. We explore a general setting involving tensor product spaces and build upon the smoothing spline analysis of variance (SS-ANOVA) framework. For $d$-dimensional models under full interaction, the optimal rates with gradient information on $p$ covariates are identical to those for the $(d-p)$-interaction models without gradients and, therefore, the models are immune to the "curse of interaction." For additive models, the optimal rates using gradient information are root-$n$, thus achieving the "parametric rate." We demonstrate aspects of the theoretical results through synthetic and real data applications.