论文标题
局部状态引起的增强的固有语音光学转变在硅纳米晶中
Localized State-Induced Enhanced Intrinsic Phonon-Free Optical Transition in Silicon Nanocrystals
论文作者
论文摘要
硅光致发光和激光一直是理解发光机制中突破瓶颈的关键问题。不幸的是,关于激子重组机制和荧光寿命的长期争议尚未解决,尤其是关于硅纳米晶体(SI NC)是否可以实现快速直接带状袋中的光学转变。在这里,使用基态和激发态密度功能理论(DFT),我们获得了从SI22到SI705的固有的无语音光学转变,表明很小的Si NC可以实现强大的直接光学转变。轨道标记结果表明,这种快速转变不是来自类似γ-γ的过渡,与有效质量近似(EMA)的结论相反,并且γ-X混合导致了准直接带频带。这种异常的过渡尤其强烈,随着尺寸降低(或量子限制的增强)。通过研究光学转变中产生的电子和孔分布,提出了局部状态引起的SI NCS中局部诱导的增强发射(LIEEE)。量子限制(QC)通过将BLOCH波定位在NC核心中,从而使激发态电子空间分布扭曲,从而导致孔和电子重叠增加,从而诱导快速的光学过程。这项工作解决了重要的辩论,并提出了Liee来解释异常发光 - 从弱(或无)发光状态到强烈的光学转变的相变,这将有助于实现高辐射率的NCS NCS材料和应用级别的SI激光器。
Silicon photoluminescence and lasing have been critical issues to breakthrough bottlenecks in the understanding of luminescence mechanisms. Unfortunately, long-standing disputes about the exciton recombination mechanism and fluorescence lifetime remain unresolved, especially about whether silicon nanocrystals (Si NCs) can realize fast direct-bandgap-like optical transitions. Here, using ground-state and excited-state density functional theory (DFT), we obtained intrinsic phonon-free optical transitions at sizes from Si22 to Si705, showing that very small Si NCs can realize a strong direct optical transition. Orbital labeling results show that this rapid transition does not come from the Γ-Γ -like transition, contrary to the conclusions from the effective mass approximation (EMA) and that Γ-X mixing leads to a quasi-direct bandgap. This anomalous transition is particularly intense with decreasing size (or enhancement of quantum confinement). By investigating electron and hole distributions generated in the optical transition, localized state-induced enhanced emission (LIEE) in Si NCs was proposed. Quantum confinement (QC) distorts the excited-state electron spatial distribution by localizing Bloch waves into the NC core, resulting in increased hole and electron overlap, thus inducing a fast optical process. This work resolves important debates and proposes LIEE to explain the anomalous luminescence--a phase transition from weak (or none) luminescent state to strong optical transition, which will aid attempts at realizing high-radiative-rate NCs materials and application-level Si lasers.