论文标题

通过隐式保留全球一致性和本地互补性来建模多个视图

Modeling Multiple Views via Implicitly Preserving Global Consistency and Local Complementarity

论文作者

Li, Jiangmeng, Qiang, Wenwen, Zheng, Changwen, Su, Bing, Razzak, Farid, Wen, Ji-Rong, Xiong, Hui

论文摘要

尽管自我监督的学习技术通常用于通过建模多种观点来从未标记的数据中挖掘隐性知识,但尚不清楚如何在复杂且不一致的环境中执行有效的表示形式学习。为此,我们提出了一种方法论,特别是一致性和互补网络(Coconet),该方法利用严格的全局视图一致性和局部跨视图互补性,可维护正则化,从多个视图中全面地学习表示形式。在全球阶段,我们认为关键知识在观点之间隐含地共享,并增强编码器以从数据中捕获此类知识可以提高学习表示表示的可区分性。因此,保留多种观点的全球一致性可确保获得常识。 Coconet通过利用基于一般切片的Wasserstein距离利用有效的差异度量测量来对齐视图的概率分布。最后,在本地阶段,我们提出了一个启发式互补性因素,该因素是跨观看歧视性知识,并且指导编码者不仅要学习视图的辨别性,而且还学习跨视图互补信息。从理论上讲,我们提供了我们提出的椰子的基于信息理论的分析。从经验上讲,为了研究我们方法的改善,我们进行了足够的实验验证,这表明椰子的表现优于最先进的自我监督方法,这证明了这种隐性的一致性和互补性保留的正则化可以增强潜在表示的可区分性。

While self-supervised learning techniques are often used to mining implicit knowledge from unlabeled data via modeling multiple views, it is unclear how to perform effective representation learning in a complex and inconsistent context. To this end, we propose a methodology, specifically consistency and complementarity network (CoCoNet), which avails of strict global inter-view consistency and local cross-view complementarity preserving regularization to comprehensively learn representations from multiple views. On the global stage, we reckon that the crucial knowledge is implicitly shared among views, and enhancing the encoder to capture such knowledge from data can improve the discriminability of the learned representations. Hence, preserving the global consistency of multiple views ensures the acquisition of common knowledge. CoCoNet aligns the probabilistic distribution of views by utilizing an efficient discrepancy metric measurement based on the generalized sliced Wasserstein distance. Lastly on the local stage, we propose a heuristic complementarity-factor, which joints cross-view discriminative knowledge, and it guides the encoders to learn not only view-wise discriminability but also cross-view complementary information. Theoretically, we provide the information-theoretical-based analyses of our proposed CoCoNet. Empirically, to investigate the improvement gains of our approach, we conduct adequate experimental validations, which demonstrate that CoCoNet outperforms the state-of-the-art self-supervised methods by a significant margin proves that such implicit consistency and complementarity preserving regularization can enhance the discriminability of latent representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源