论文标题

基于模型的健身房环境,用于限制订单交易

Model-based gym environments for limit order book trading

论文作者

Jerome, Joseph, Sanchez-Betancourt, Leandro, Savani, Rahul, Herdegen, Martin

论文摘要

在数学金融文献中,有一个丰富的数学模型目录,用于研究算法交易问题(例如营销和最佳执行)。本文介绍了\ MBTGYM,这是一个Python模块,该模块为培训增强剂学习(RL)代理提供了一套健身环境,以解决此类基于模型的交易问题。该模块以一种可扩展的方式设置,以允许不同模型不同方面的组合。它支持对矢量化环境的高效实现,以更快地训练RL代理。在本文中,我们激发了使用RL解决数学金融中基于模型的限制订单书籍问题的挑战,我们解释了我们的健身房环境的设计,然后展示其在解决文献中解决标准和非标准问题中的用途。最后,我们为模块的进一步开发提供了路线图,该路线图是GitHub上的开源存储库,以便它可以作为基于模型算法交易的RL研究的焦点。

Within the mathematical finance literature there is a rich catalogue of mathematical models for studying algorithmic trading problems -- such as market-making and optimal execution -- in limit order books. This paper introduces \mbtgym, a Python module that provides a suite of gym environments for training reinforcement learning (RL) agents to solve such model-based trading problems. The module is set up in an extensible way to allow the combination of different aspects of different models. It supports highly efficient implementations of vectorized environments to allow faster training of RL agents. In this paper, we motivate the challenge of using RL to solve such model-based limit order book problems in mathematical finance, we explain the design of our gym environment, and then demonstrate its use in solving standard and non-standard problems from the literature. Finally, we lay out a roadmap for further development of our module, which we provide as an open source repository on GitHub so that it can serve as a focal point for RL research in model-based algorithmic trading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源