论文标题
信号时间逻辑谓词的模型预测鲁棒性
Model Predictive Robustness of Signal Temporal Logic Predicates
论文作者
论文摘要
信号时间逻辑的鲁棒性不仅评估信号是否遵守规范,而且还提供了对公式的满足或违反的量度。鲁棒性的计算基于评估潜在谓词的鲁棒性。但是,谓词的鲁棒性通常以无模型方式定义,即不包括系统动力学。此外,精确定义复杂谓词的鲁棒性通常是不平凡的。为了解决这些问题,我们提出了模型预测鲁棒性的概念,该概念通过考虑基于模型的预测,它与以前的方法相比提供了一种更系统的评估鲁棒性的方法。特别是,我们使用高斯过程回归来基于预定的预测来学习鲁棒性,以便可以在线上有效地计算鲁棒性值。我们评估了对自动驾驶用例的方法,该案例使用记录的数据集上的正式流量规则中使用的谓词来评估我们的方法,这在精确方面强调了我们方法的优势。通过将我们的鲁棒性定义纳入轨迹规划师,自动驾驶汽车比数据集中的人类驾驶员更强大地遵守交通规则。
The robustness of signal temporal logic not only assesses whether a signal adheres to a specification but also provides a measure of how much a formula is fulfilled or violated. The calculation of robustness is based on evaluating the robustness of underlying predicates. However, the robustness of predicates is usually defined in a model-free way, i.e., without including the system dynamics. Moreover, it is often nontrivial to define the robustness of complicated predicates precisely. To address these issues, we propose a notion of model predictive robustness, which provides a more systematic way of evaluating robustness compared to previous approaches by considering model-based predictions. In particular, we use Gaussian process regression to learn the robustness based on precomputed predictions so that robustness values can be efficiently computed online. We evaluate our approach for the use case of autonomous driving with predicates used in formalized traffic rules on a recorded dataset, which highlights the advantage of our approach compared to traditional approaches in terms of precision. By incorporating our robustness definitions into a trajectory planner, autonomous vehicles obey traffic rules more robustly than human drivers in the dataset.