论文标题

明确封闭的半群的亚组

Subgroups of categorically closed semigroups

论文作者

Banakh, Taras, Bardyla, Serhii

论文摘要

令$ \ Mathcal C $为一类拓扑半群。如果$ x $在\ in \ Mathcal c $中关闭$ x $,则称为(1)$ \ MATHCAL C $ - $关闭$,如果$ x $在\ in \ Mathcal c $ in \ Mathcal c $中,含有$ x $作为离散的subigroup,(2)$ $ $ $ $ $ $ \ $ $ \ $ \ $ \ mathcal c $ - 对于任何理想的$ x $ x $ x $ x $ x $ x $ x $ x $ x $ i \ i i i \ - i i $ i i i i i i i i i i i c. (3)绝对$ $ $ $ $ $ $ $ $ $ $关闭$,如果任何同构$ h:x \ to y $ to y $ to to topology semigroup $ y \ in \ mathcal c $,image $ h [x] $在$ y $中封闭,(4)$ $ $ $ $ $ \ nift $ \ nift $ $ $ $ $ $ $ $ \ nift $ \ nift $ \ nift $ \ nift $ \ nift $ \ nift $ \ nift。 $ h:x \ to y $ to topolication semigroup $ y \ in \ mathcal c $,图像$ h [x] $在$ y $中关闭(分别离散)。令$ \ mathsf {t _ {\!z} s} $为Tychonoff零维拓扑半群的类。对于半群,$ x $ let $ v \!理想的$ x $。我们证明了以下结果:(i)对于任何理想的$ \ mathsf {t _ {\!z} s} $ - 封闭的semigroup $ x $ x $每个中心$ z(x)= \ {z \ in x:\ in x:\ in x:\ in x:\ forall x \ in x \ \; \ \ \; \; \ \;(xz = zx) (ii)对于任何$ \ mathsf {t _ {\!z} s} $ - 封闭的semigroup $ x $,理想中心$ i \!z(x)= \ {z \ in z(x):zx \ subseteq z(x)(x)\} $的每个子组; (iii)对于任何$ \ mathsf { $ \ mathsf {t _ {\!z} s} $ - 封闭的semigroup $ x $,最大子组$ h_e $是理想情况下(和绝对)$ \ mathsf {t _ {\!z} s} s} $ - 封闭并已封闭,已限制(和finite)中心$ z(h_e)$。

Let $\mathcal C$ be a class of topological semigroups. A semigroup $X$ is called (1) $\mathcal C$-$closed$ if $X$ is closed in every topological semigroup $Y\in\mathcal C$ containing $X$ as a discrete subsemigroup, (2) $ideally$ $\mathcal C$-$closed$ if for any ideal $I$ in $X$ the quotient semigroup $X/I$ is $\mathcal C$-closed; (3) $absolutely$ $\mathcal C$-$closed$ if for any homomorphism $h:X\to Y$ to a topological semigroup $Y\in\mathcal C$, the image $h[X]$ is closed in $Y$, (4) $injectively$ $\mathcal C$-$closed$ (resp. $\mathcal C$-$discrete$) if for any injective homomorphism $h:X\to Y$ to a topological semigroup $Y\in\mathcal C$, the image $h[X]$ is closed (resp. discrete) in $Y$. Let $\mathsf{T_{\!z}S}$ be the class of Tychonoff zero-dimensional topological semigroups. For a semigroup $X$ let $V\!E(X)$ be the set of all viable idempotents of $X$, i.e., idempotents $e$ such that the complement $X\setminus\frac{H_e}e$ of the set $\frac{H_e}e=\{x\in X:xe=ex\in H_e\}$ is an ideal in $X$. We prove the following results: (i) for any ideally $\mathsf{T_{\!z}S}$-closed semigroup $X$ each subgroup of the center $Z(X)=\{z\in X:\forall x\in X\;\;(xz=zx)\}$ is bounded; (ii) for any $\mathsf{T_{\!z}S}$-closed semigroup $X$, each subgroup of the ideal center $I\!Z(X)=\{z\in Z(X):zX\subseteq Z(X)\}$ is bounded; (iii) for any $\mathsf{T_{\!z}S}$-discrete or injectively $\mathsf{T_{\!z}S}$-closed semigroup $X$, every subgroup of $Z(X)$ is finite, (iv) for any viable idempotent $e$ in an ideally (and absolutely) $\mathsf{T_{\!z}S}$-closed semigroup $X$, the maximal subgroup $H_e$ is ideally (and absolutely) $\mathsf{T_{\!z}S}$-closed and has bounded (and finite) center $Z(H_e)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源