论文标题

在2 + 1个维度中,具有三角点组的异常流体动力学

Anomalous hydrodynamics with triangular point group in 2 + 1 dimensions

论文作者

Qi, Marvin, Guo, Jinkang, Lucas, Andrew

论文摘要

我们提出了2+1个维度的向量U(1)电荷的流体动力学理论,其旋转对称性被打破到等边三角形的点组。我们表明,u(1)有可能具有手性异常。这种异常的流体动力学结果是引入了对流体动力模式的分散关系的弹道贡献。我们模拟了经典的马尔可夫连锁店,并找到了异常流体动力普遍性类别的令人信服的数值证据。还讨论了我们理论对其他对称群体的概括。

We present a theory of hydrodynamics for a vector U(1) charge in 2+1 dimensions, whose rotational symmetry is broken to the point group of an equilateral triangle. We show that it is possible for this U(1) to have a chiral anomaly. The hydrodynamic consequence of this anomaly is the introduction of a ballistic contribution to the dispersion relation for the hydrodynamic modes. We simulate classical Markov chains and find compelling numerical evidence for the anomalous hydrodynamic universality class. Generalizations of our theory to other symmetry groups are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源