论文标题

任意矩阵掩码的矢量细分方案

Vector Subdivision Schemes for Arbitrary Matrix Masks

论文作者

Han, Bin

论文摘要

使用矩阵掩模,矢量细分方案是一种快速的迭代平均算法,以计算数值PDE中的小波方法的可改进的矢量函数,并在CAGD中产生平滑的曲线。与研究良好的标量细分方案形成鲜明对比的是,矢量细分方案的理解不足,例如,拉格朗日和(广义的)Hermite细分方案是文献中唯一研究的矢量细分方案。由于数值PDE中使用的许多小波都来自可改进的矢量函数,其基质遮罩不是来自Hermite subdivision方案,因此有必要引入和研究任何通用矩阵掩模的矢量细分方案,以便为了计算波波和可改进的矢量有效地函数。对于一般的矩阵掩码,我们表明只有一种有意义的方式来定义向量细分方案。由矢量级联算法和有关Hermite细分方案的最新研究的动机,我们将为任何任意矩阵掩码定义一个矢量细分方案,然后证明新定义的矢量细分方案的收敛等于其相关的矢量级联Algorithm的融合。我们还研究了向量细分方案的收敛速率。本文的结果不仅弥合了差距,并在矢量细分方案与矢量级联算法之间建立了内在联系,而且还加强了对Lagrange和(广义的)Hermite细分方案的当前已知结果。提供了几个示例,以说明本文有关各种类型的矢量细分方案的结果。

Employing a matrix mask, a vector subdivision scheme is a fast iterative averaging algorithm to compute refinable vector functions for wavelet methods in numerical PDEs and to produce smooth curves in CAGD. In sharp contrast to the well-studied scalar subdivision schemes, vector subdivision schemes are much less well understood, e.g., Lagrange and (generalized) Hermite subdivision schemes are the only studied vector subdivision schemes in the literature. Because many wavelets used in numerical PDEs are derived from refinable vector functions whose matrix masks are not from Hermite subdivision schemes, it is necessary to introduce and study vector subdivision schemes for any general matrix masks in order to compute wavelets and refinable vector functions efficiently. For a general matrix mask, we show that there is only one meaningful way of defining a vector subdivision scheme. Motivated by vector cascade algorithms and recent study on Hermite subdivision schemes, we shall define a vector subdivision scheme for any arbitrary matrix mask and then we prove that the convergence of the newly defined vector subdivision scheme is equivalent to the convergence of its associated vector cascade algorithm. We also study convergence rates of vector subdivision schemes. The results of this paper not only bridge the gaps and establish intrinsic links between vector subdivision schemes and vector cascade algorithms but also strengthen and generalize current known results on Lagrange and (generalized) Hermite subdivision schemes. Several examples are provided to illustrate the results in this paper on various types of vector subdivision schemes with convergence rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源