论文标题

通过机器学习方法有效的气候模拟

Efficient Climate Simulation via Machine Learning Method

论文作者

Wang, Xin, Xue, Wei, Han, Yilun, Yang, Guangwen

论文摘要

结合数据驱动技术和数值方法的混合建模是有效气候模拟的新兴而有希望的研究方向。但是,以前的作品缺乏实用的平台,使开发混合建模是一个具有挑战性的编程问题。此外,缺乏标准数据集和评估指标可能会阻碍研究人员在统一条件下全面比较各种算法。为了解决这些问题,我们提出了一个称为Neuroclim的框架,用于在现实世界中进行混合建模,这是一个基本设置,以模拟我们所生活的真实气候。神经locloclim由三个部分组成:(1)平台。我们开发了一个用户友好的平台NeuroGCM,用于在气候模拟中有效地开发混合建模。 (2)数据集。我们为混合建模中的数据驱动方法提供了一个开源数据集。我们研究了数据的特征,即异质性和僵硬,这揭示了回归气候模拟数据的困难。 (3)指标。我们提出了一种定量评估混合建模的方法,包括机器学习模型的近似能力和模拟过程中的稳定性。我们认为,NeuroClim允许研究人员在没有高水平的气候专业知识的情况下工作,并且只专注于机器学习算法设计,这将加速AI气候交叉点中的混合建模研究。代码和数据在https://github.com/x-w19/neuroclim上发布。

Hybrid modeling combining data-driven techniques and numerical methods is an emerging and promising research direction for efficient climate simulation. However, previous works lack practical platforms, making developing hybrid modeling a challenging programming problem. Furthermore, the lack of standard data sets and evaluation metrics may hamper researchers from comprehensively comparing various algorithms under a uniform condition. To address these problems, we propose a framework called NeuroClim for hybrid modeling under the real-world scenario, a basic setting to simulate the real climate that we live in. NeuroClim consists of three parts: (1) Platform. We develop a user-friendly platform NeuroGCM for efficiently developing hybrid modeling in climate simulation. (2) Dataset. We provide an open-source dataset for data-driven methods in hybrid modeling. We investigate the characteristics of the data, i.e., heterogeneity and stiffness, which reveals the difficulty of regressing climate simulation data; (3) Metrics. We propose a methodology for quantitatively evaluating hybrid modeling, including the approximation ability of machine learning models and the stability during simulation. We believe that NeuroClim allows researchers to work without high level of climate-related expertise and focus only on machine learning algorithm design, which will accelerate hybrid modeling research in the AI-Climate intersection. The codes and data are released at https://github.com/x-w19/NeuroClim.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源