论文标题
自主无人机任务的面向边缘体系结构的模型预测控制方案
An Edge Architecture Oriented Model Predictive Control Scheme for an Autonomous UAV Mission
论文作者
论文摘要
在本文中检查了控制器的实现,特别是在边缘计算设备上的模型预测控制器(MPC)的实现,以控制无人机(UAV)模型的轨迹。与其他控制器相比,MPC需要更多的计算功率,例如PID或LQR,因为它使用成本函数,优化方法,并且迭代预测了系统的输出和将来的某些确定步骤的控制命令(预测范围)。因此,所需的计算能力取决于预测范围,成本函数的复杂性和优化。确定地平线的步骤越多,控制器的效率就越有效,但需要更多的计算功率。由于有时机器人无法在本地管理所有计算过程,因此重要的是将某些计算过程从机器人卸载到云。但是随后可能会发生一些缺点,例如延迟和安全问题。云计算可能会提供“无限”计算能力,但整个系统均遭受延迟。一个解决方案是使用边缘计算,这将减少时间延迟,因为边缘设备更接近数据源。此外,通过使用边缘,我们可以从无人机中卸载苛刻的控制器,并设置更长的预测范围,并尝试获得更有效的控制器。
In this article the implementation of a controller and specifically of a Model Predictive Controller (MPC) on an Edge Computing device, for controlling the trajectory of an Unmanned Aerial Vehicle (UAV) model, is examined. MPC requires more computation power in comparison to other controllers, such as PID or LQR, since it use cost functions, optimization methods and iteratively predicts the output of the system and the control commands for some determined steps in the future (prediction horizon). Thus, the computation power required depends on the prediction horizon, the complexity of the cost functions and the optimization. The more steps determined for the horizon the more efficient the controller can be, but also more computation power is required. Since sometimes robots are not capable of managing all the computing process locally, it is important to offload some of the computing process from the robot to the cloud. But then some disadvantages may occur, such as latency and safety issues. Cloud computing may offer "infinity" computation power but the whole system suffers in latency. A solution to this is the use of Edge Computing, which will reduce time delays since the Edge device is much closer to the source of data. Moreover, by using the Edge we can offload the demanding controller from the UAV and set a longer prediction horizon and try to get a more efficient controller.