论文标题

人姿势驱动的对象效果建议

Human Pose Driven Object Effects Recommendation

论文作者

Fan, Zhaoxin, Li, Fengxin, Liu, Hongyan, He, Jun, Du, Xiaoyong

论文摘要

在本文中,我们研究了Micro-Video平台中的对象效果建议的新主题,这对于许多实际应用(例如广告插入)来说是一项具有挑战性但重要的任务。为了避免引入由图像框架直接学习视频内容引起的背景偏见的问题,我们建议利用3D人类姿势中隐藏的有意义的肢体语言进行推荐。为此,在这项工作中,引入了一种新型的人类姿势驱动的对象效应建议网络称为poserec。 Poserec利用了3D人姿势检测的优势,并从多框架3D人姿势中学习信息进行视频项目注册,从而导致高质量的对象效果建议建议性能。此外,为了解决对象效应建议中存在的固有的歧义和稀疏性问题,我们进一步提出了一种新颖的物品感知的隐性原型学习模块,并提出了一种新颖的姿势感知的托管性thressductive的硬性硬性采矿模块,以更好地学习姿势 - 项目的关系。更重要的是,要为新研究主题进行基准方法,我们为对象效果推荐构建了一个名为Pose-Obe的新数据集。对姿势攻击的广泛实验表明,我们的方法比强基础可以取得优越的性能。

In this paper, we research the new topic of object effects recommendation in micro-video platforms, which is a challenging but important task for many practical applications such as advertisement insertion. To avoid the problem of introducing background bias caused by directly learning video content from image frames, we propose to utilize the meaningful body language hidden in 3D human pose for recommendation. To this end, in this work, a novel human pose driven object effects recommendation network termed PoseRec is introduced. PoseRec leverages the advantages of 3D human pose detection and learns information from multi-frame 3D human pose for video-item registration, resulting in high quality object effects recommendation performance. Moreover, to solve the inherent ambiguity and sparsity issues that exist in object effects recommendation, we further propose a novel item-aware implicit prototype learning module and a novel pose-aware transductive hard-negative mining module to better learn pose-item relationships. What's more, to benchmark methods for the new research topic, we build a new dataset for object effects recommendation named Pose-OBE. Extensive experiments on Pose-OBE demonstrate that our method can achieve superior performance than strong baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源