论文标题
最佳使用替代标记以提高功率
Towards Optimal Use of Surrogate Markers to Improve Power
论文作者
论文摘要
由于决策者的压力增加,要缩短评估治疗疗效所需的时间,以便可以公开使用被认为是安全有效的治疗方法,因此人们最近有很大的兴趣使用更早或更易于衡量的代理标记物,$ s $,代替主要结果,$ y $。为了验证这些环境中替代标记的效用,通常提倡的措施是治疗对主要结果的效果的比例,这是通过对替代标记(PTE)的治疗效应来解释的。还开发了基于模型的PTE和模型的无模型估计器。尽管此措施非常直观,但它并未直接解决如何使用$ S $来推断下一阶段临床试验中不可用的$ y $的重要问题。在本文中,为了最佳地使用替代物的信息,我们提供了一个框架,用于得出$ s $,$ g_ {opt}(s)$的最佳转换,从而使对$ g_ {opt}(s)$的处理效果在某些意义上最大程度地近似于$ y $的处理效果。基于最佳转化的替代物,$ g_ {opt}(s)$,我们提出了一种量化代孕,相对功率(RP)的新措施,并演示如何使用RP来用$ s $而不是$ y $做出下一阶段试验的$ y $。我们提出了非参数估计程序,得出渐近特性,并将RP度量与PTE度量进行比较。通过模拟研究评估我们的估计量的有限样本性能。我们使用应用于糖尿病预防计划(DPP)临床试验的应用来说明我们的提议程序,以评估血红蛋白A1C和禁食等离子体葡萄糖作为糖尿病的替代标记物的实用性。
Motivated by increasing pressure for decision makers to shorten the time required to evaluate the efficacy of a treatment such that treatments deemed safe and effective can be made publicly available, there has been substantial recent interest in using an earlier or easier to measure surrogate marker, $S$, in place of the primary outcome, $Y$. To validate the utility of a surrogate marker in these settings, a commonly advocated measure is the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate marker (PTE). Model based and model free estimators for PTE have also been developed. While this measure is very intuitive, it does not directly address the important questions of how $S$ can be used to make inference of the unavailable $Y$ in the next phase clinical trials. In this paper, to optimally use the information of surrogate S, we provide a framework for deriving an optimal transformation of $S$, $g_{opt}(S)$, such that the treatment effect on $g_{opt}(S)$ maximally approximates the treatment effect on $Y$ in a certain sense. Based on the optimally transformed surrogate, $g_{opt}(S)$, we propose a new measure to quantify surrogacy, the relative power (RP), and demonstrate how RP can be used to make decisions with $S$ instead of $Y$ for next phase trials. We propose nonparametric estimation procedures, derive asymptotic properties, and compare the RP measure with the PTE measure. Finite sample performance of our estimators is assessed via a simulation study. We illustrate our proposed procedures using an application to the Diabetes Prevention Program (DPP) clinical trial to evaluate the utility of hemoglobin A1c and fasting plasma glucose as surrogate markers for diabetes.