论文标题
步态:步态识别的多晶格运动序列学习
GaitMM: Multi-Granularity Motion Sequence Learning for Gait Recognition
论文作者
论文摘要
步态识别旨在通过观察每个身体部位的不同周期运动来识别个人特定的步行模式。但是,大多数现有方法都平等处理每个部分,并且无法解释由步态序列的不同步骤频率和采样率引起的数据冗余。在这项研究中,我们提出了一个用于步态序列学习的多粒性运动表示网络(步态)。在GAITMM中,我们设计了一个组合的全身和细粒序列学习模块(FFSL),以探索独立于部分的时空表示。此外,我们利用框架的压缩策略,称为多尺度运动聚集(MSMA),以捕获步态序列中的区分信息。在两个公共数据集Casia-B和OUMVLP上进行的实验表明,我们的方法达到了最先进的表演。
Gait recognition aims to identify individual-specific walking patterns by observing the different periodic movements of each body part. However, most existing methods treat each part equally and fail to account for the data redundancy caused by the different step frequencies and sampling rates of gait sequences. In this study, we propose a multi-granularity motion representation network (GaitMM) for gait sequence learning. In GaitMM, we design a combined full-body and fine-grained sequence learning module (FFSL) to explore part-independent spatio-temporal representations. Moreover, we utilize a frame-wise compression strategy, referred to as multi-scale motion aggregation (MSMA), to capture discriminative information in the gait sequence. Experiments on two public datasets, CASIA-B and OUMVLP, show that our approach reaches state-of-the-art performances.