论文标题
单量门的顺序最佳选择及其与参数化量子电路中与贫瘠平稳的关系
Sequential optimal selection of a single-qubit gate and its relation to barren plateau in parameterized quantum circuits
论文作者
论文摘要
我们提出了一种用于变化量子算法(VQA)的算法,以有效地优化参数化量子电路(PQC)的结构。该算法通过使用最佳元素依次替换单量门以最小化目标函数来优化VQA中的PQC结构。为了直接找到最佳门,我们的方法使用矩阵的分解,其元素在一组略微修饰的电路上评估。矩阵分解使我们不仅能够统一现有的顺序方法以进行进一步扩展,还可以与传统的基于梯度的优化器相比,提供了严格的限制和潜力证明。首先,当电路足够深时,顺序方法会遇到贫瘠的平稳,即基质的光谱相对于量子数的数量,矩阵的光谱集中在单个值上。其次,如果目标函数是局部可观察到的,则只要N Qubit PQC的深度为$ O(\ log {n})$,它们就可以避免贫瘠的高原。尽管这些优化器的家族并未直接采用目标功能的梯度,但我们的结果与常规优化建立了联系,从而提供了贫瘠高原的一致图片。我们还执行数值实验,显示了与常规VQA相比的优势,并确认在混合场iSing模型的基态问题上成功优化了贫瘠的高原。
We propose an algorithm for variational quantum algorithms (VQAs) to optimize the structure of parameterized quantum circuits (PQCs) efficiently. The algorithm optimizes the PQC structure on-the-fly in VQA by sequentially replacing a single-qubit gate with the optimal one to minimize the objective function. To directly find the optimal gate, our method uses the factorization of matrices whose elements are evaluated on a set of the slightly-modified circuits. The matrix factorization enables us to not only unify the existing sequential methods for further extension but also provide rigorous proofs of their limitation and potential in comparison with conventional gradient-based optimizers. Firstly, when the circuits are sufficiently deep, the sequential methods encounter a barren plateau that the spectrum of the matrix concentrates on a single value exponentially fast with respect to the number of qubits. Secondly, if the objective functions are local observables, they can avoid barren plateaus as long as the depth of the n-qubit PQCs is $O(\log{n})$. Although the family of these optimizers does not directly employ gradients of the objective function, our results establish their connection with conventional optimizations providing a consistent picture of the barren plateau. We also perform numerical experiments showing the advantages over conventional VQAs and confirm the successful optimization getting over the barren plateau in the ground state problem of the mixed field Ising model up to 12 qubits.