论文标题
控制巨大磁磁材料中手性轨道电流
Control of chiral orbital currents in a colossal magnetoresistance material
论文作者
论文摘要
在存在磁场的情况下,巨大的磁阻(CMR)是电导率的非凡增强。它通常与场诱导的自旋极化相关,该旋转极化大大降低了自旋散射,从而降低了电阻。然而,铁磁性MN3SI2TE6是该规则的一个有趣的例外:它在AB平面电阻率中表现出7级魔力降低,仅在避免磁性极化时才发生13-泰斯拉各向异性场[1]。在这里,我们报告了一种外来的量子状态,该状态是由沿MNTE6八面体边缘流动的AB平面性手性轨道电流(COC)驱动的。当将外部磁场沿磁性硬C轴对齐时,AB平面COC夫妇的C轴轨道矩对铁磁MN旋转大大增加了AB平面电导率(CMR)。 COC状态及其CMR都非常容易受到超过临界阈值的小型直流电流的影响,并且该COC状态的标志是一个异国情调的时间依赖性的,可模仿一阶熔化过渡的时光。控制COC的CMR和Bissable Switching的控制为量子技术提供了新的范式。
Colossal magnetoresistance (CMR) is an extraordinary enhancement of the electric conductivity in the presence of a magnetic field. It is conventionally associated with a field-induced spin polarization, which drastically reduces spin scattering and thus electric resistance. However, ferrimagnetic Mn3Si2Te6 is an intriguing exception to this rule: it exhibits a 7-order-of-magnitude reduction in ab-plane resistivity with a 13-Tesla anisotropy field which occur only when a magnetic polarization is avoided [1]. Here we report an exotic quantum state that is driven by ab-plane chiral orbital currents (COC) flowing along edges of MnTe6 octahedra. The c-axis orbital moments of ab-plane COC couple to the ferrimagnetic Mn spins to drastically increase the ab-plane conductivity (CMR) when an external magnetic field is aligned along the magnetic hard c-axis. Both the COC state and its CMR are extraordinarily susceptible to small DC currents exceeding a critical threshold, and a hallmark of this COC state is an exotic time-dependent, bistable switching mimicking a first-order melting transition. The control of the COC-enabled CMR and bistable switching offers a fundamentally new paradigm for quantum technologies.