论文标题

神经符号潜在空间中基于知识的类比推理

Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces

论文作者

Shah, Vishwa, Sharma, Aditya, Shroff, Gautam, Vig, Lovekesh, Dash, Tirtharaj, Srinivasan, Ashwin

论文摘要

类比推理问题挑战了连接主义者和符号AI系统,因为这些系统需要将背景知识,推理和模式识别的结合。符号系统摄入显式域知识并执行演绎推理,但它们对噪声敏感,并且需要输入以预设符号特征。另一方面,Connectionist系统可以直接摄入丰富的输入空间,例如图像,文本或语音,即使输入嘈杂,也可以识别模式。但是,Connectionist模型努力将明确的领域知识用于演绎推理。在本文中,我们提出了一个框架,将神经网络的模式识别能力与象征性推理和背景知识相结合,以解决一类类似推理问题,其中一组属性及其可能的关系是已知的。我们从“ DeepMind 2020”的“神经算法推理”方法中汲取灵感,并通过(i)学习基于问题的符号模型的分布式表示形式(II)培训神经网络转换反映了问题中涉及的关系的神经网络转换,并最终(iii)(iii)从图像中培养图像到分布式代表的神经网络介绍(III)。这三个要素使我们能够使用神经网络作为操纵分布式表示的基本功能执行基于搜索的推理。我们在乌鸦渐进式矩阵中的视觉类比问题上进行了测试,并在人类绩效中实现准确性竞争,并且在某些情况下优于初始端到端神经网络的方法。尽管最近接受大规模训练的神经模型产生了SOTA,但我们的新型神经符号推理方法是解决此问题的有希望的方向,并且可以说是更笼统的,尤其是对于可用的领域知识的问题。

Analogical Reasoning problems challenge both connectionist and symbolic AI systems as these entail a combination of background knowledge, reasoning and pattern recognition. While symbolic systems ingest explicit domain knowledge and perform deductive reasoning, they are sensitive to noise and require inputs be mapped to preset symbolic features. Connectionist systems on the other hand can directly ingest rich input spaces such as images, text or speech and recognize pattern even with noisy inputs. However, connectionist models struggle to include explicit domain knowledge for deductive reasoning. In this paper, we propose a framework that combines the pattern recognition abilities of neural networks with symbolic reasoning and background knowledge for solving a class of Analogical Reasoning problems where the set of attributes and possible relations across them are known apriori. We take inspiration from the 'neural algorithmic reasoning' approach [DeepMind 2020] and use problem-specific background knowledge by (i) learning a distributed representation based on a symbolic model of the problem (ii) training neural-network transformations reflective of the relations involved in the problem and finally (iii) training a neural network encoder from images to the distributed representation in (i). These three elements enable us to perform search-based reasoning using neural networks as elementary functions manipulating distributed representations. We test this on visual analogy problems in RAVENs Progressive Matrices, and achieve accuracy competitive with human performance and, in certain cases, superior to initial end-to-end neural-network based approaches. While recent neural models trained at scale yield SOTA, our novel neuro-symbolic reasoning approach is a promising direction for this problem, and is arguably more general, especially for problems where domain knowledge is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源