论文标题
序列到集合的生成模型
Sequence-to-Set Generative Models
论文作者
论文摘要
在本文中,我们提出了一种序列到集的方法,该方法可以根据最大似然的最大可能性将任何序列生成模型转换为设置生成模型,我们可以在其中评估任何集合的效用/概率。设计了一种有效的重要性采样算法,以应对学习序列到集合模型的计算挑战。我们提出GRU2SET,这是我们的序列到集合方法的实例,并采用著名的GRU模型作为序列生成模型。为了进一步获得集合的置换不变表示,我们设计了SETNN模型,这也是序列到集合模型的实例。我们模型的直接应用是从电子商务订单集合中学习订单/集合,这是许多重要的运营决策中的重要一步,例如快速交付的库存安排。基于与大型集合相比,小型集合通常更容易学习的直觉,我们提出了一个尺寸偏见的技巧,可以帮助学习相对于$ \ ell_1 $ distance评估度量的更好的设置分布。两个电子商务订单数据集TMALL和HKTVMALL用于进行广泛的实验以显示我们的模型的有效性。实验结果表明,与基准相比,我们的模型可以从订单数据中学习更好的设置/顺序分布。此外,无论我们使用哪种模型,应用大小偏见的技巧始终都可以提高从数据中学到的集合分布的质量。
In this paper, we propose a sequence-to-set method that can transform any sequence generative model based on maximum likelihood to a set generative model where we can evaluate the utility/probability of any set. An efficient importance sampling algorithm is devised to tackle the computational challenge of learning our sequence-to-set model. We present GRU2Set, which is an instance of our sequence-to-set method and employs the famous GRU model as the sequence generative model. To further obtain permutation invariant representation of sets, we devise the SetNN model which is also an instance of the sequence-to-set model. A direct application of our models is to learn an order/set distribution from a collection of e-commerce orders, which is an essential step in many important operational decisions such as inventory arrangement for fast delivery. Based on the intuition that small-sized sets are usually easier to learn than large sets, we propose a size-bias trick that can help learn better set distributions with respect to the $\ell_1$-distance evaluation metric. Two e-commerce order datasets, TMALL and HKTVMALL, are used to conduct extensive experiments to show the effectiveness of our models. The experimental results demonstrate that our models can learn better set/order distributions from order data than the baselines. Moreover, no matter what model we use, applying the size-bias trick can always improve the quality of the set distribution learned from data.