论文标题

在LiDar Point Clouds上有效且一致的束调整

Efficient and Consistent Bundle Adjustment on Lidar Point Clouds

论文作者

Liu, Zheng, Liu, Xiyuan, Zhang, Fu

论文摘要

束调整(BA)是指同时确定传感器姿势和场景几何形状的问题,这是机器人视觉中的一个基本问题。本文为LiDar传感器提供了一种有效且一致的捆绑捆绑调整方法。该方法采用边缘和平面特征来表示场景的几何形状,并直接最大程度地减少了从每个原始点到各个几何特征的天然欧几里得距离。该公式的一个不错的特性是可以在分析上求解几何特征,从而大大降低了数值优化的维度。为了更有效地表示和解决所得优化问题,本文提出了一个新颖的概念{\ it点簇},该概念通过一组紧凑的参数来编码与同一特征相关的所有原始点,{\ it point coint cluster coordinates}。我们根据点群集坐标得出了BA优化的封闭形式衍生物,最高为第二阶,并显示其理论属性,例如空空间和稀疏性。基于这些理论结果,本文开发了有效的二阶BA求解器。除了估计LiDAR姿势外,求解器还利用第二阶信息来估计测量噪声引起的姿势不确定性,从而导致对LiDar姿势的一致估计。此外,由于使用点群集的使用,开发的求解器从根本上避免了在优化的所有步骤中对每个原始点的枚举(由于数量较大而非常耗时):成本评估,衍生品评估和不确定性评估。我们的方法的实施是开源的,以使机器人界及其他地区受益。

Bundle Adjustment (BA) refers to the problem of simultaneous determination of sensor poses and scene geometry, which is a fundamental problem in robot vision. This paper presents an efficient and consistent bundle adjustment method for lidar sensors. The method employs edge and plane features to represent the scene geometry, and directly minimizes the natural Euclidean distance from each raw point to the respective geometry feature. A nice property of this formulation is that the geometry features can be analytically solved, drastically reducing the dimension of the numerical optimization. To represent and solve the resultant optimization problem more efficiently, this paper then proposes a novel concept {\it point clusters}, which encodes all raw points associated to the same feature by a compact set of parameters, the {\it point cluster coordinates}. We derive the closed-form derivatives, up to the second order, of the BA optimization based on the point cluster coordinates and show their theoretical properties such as the null spaces and sparsity. Based on these theoretical results, this paper develops an efficient second-order BA solver. Besides estimating the lidar poses, the solver also exploits the second order information to estimate the pose uncertainty caused by measurement noises, leading to consistent estimates of lidar poses. Moreover, thanks to the use of point cluster, the developed solver fundamentally avoids the enumeration of each raw point (which is very time-consuming due to the large number) in all steps of the optimization: cost evaluation, derivatives evaluation and uncertainty evaluation. The implementation of our method is open sourced to benefit the robotics community and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源