论文标题

Neuralmarker:学习通用标记通讯的框架

NeuralMarker: A Framework for Learning General Marker Correspondence

论文作者

Huang, Zhaoyang, Pan, Xiaokun, Pan, Weihong, Bian, Weikang, Xu, Yan, Cheung, Ka Chun, Zhang, Guofeng, Li, Hongsheng

论文摘要

我们解决了从一般标记(例如电影海报)估算对应的问题,以捕获这种标记的图像。通常,通过拟合基于稀疏特征匹配的同型模型来解决此问题。但是,他们只能处理类似平面的标记,而稀疏功能无法充分利用外观信息。在本文中,我们提出了一个新型的框架神经标记,训练神经网络估计在各种具有挑战性的条件下(例如标记变形,刺激性照明等)下估计密集的标记对应。我们表明,神经标记的表现明显胜过以前的方法,并实现了新的有趣应用程序,包括增强现实(AR)和视频编辑。

We tackle the problem of estimating correspondences from a general marker, such as a movie poster, to an image that captures such a marker. Conventionally, this problem is addressed by fitting a homography model based on sparse feature matching. However, they are only able to handle plane-like markers and the sparse features do not sufficiently utilize appearance information. In this paper, we propose a novel framework NeuralMarker, training a neural network estimating dense marker correspondences under various challenging conditions, such as marker deformation, harsh lighting, etc. Besides, we also propose a novel marker correspondence evaluation method circumstancing annotations on real marker-image pairs and create a new benchmark. We show that NeuralMarker significantly outperforms previous methods and enables new interesting applications, including Augmented Reality (AR) and video editing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源