论文标题
一种基于成本的多层网络方法,用于发现患者表型
A cost-based multi-layer network approach for the discovery of patient phenotypes
论文作者
论文摘要
临床记录经常包括对患者特征的评估,其中可能包括完成各种问卷。这些问卷提供了有关患者当前健康状况的各种观点。捕获这些观点给出的异质性不仅至关重要,而且对开发临床表型的成本效益技术的需求也不断增长。填写许多问卷可能是患者的压力,因此昂贵。在这项工作中,我们提出了钴 - 一种基于成本的层选择器模型,用于使用社区检测方法检测表型。我们的目标是最大程度地减少用于构建这些表型的功能的数量,同时保持其质量。我们使用来自慢性耳鸣患者的问卷数据测试我们的模型,并在多层网络结构中代表数据。然后,通过使用基线特征(年龄,性别和治疗前数据)以及确定的表型作为特征来评估该模型。对于某些治疗后变量,使用来自钴的表型作为特征的预测因素优于使用传统聚类方法检测到的表型的预测因素。此外,与仅接受基线特征训练的预测变量相比,使用表型数据预测治疗后数据被证明是有益的。
Clinical records frequently include assessments of the characteristics of patients, which may include the completion of various questionnaires. These questionnaires provide a variety of perspectives on a patient's current state of well-being. Not only is it critical to capture the heterogeneity given by these perspectives, but there is also a growing demand for developing cost-effective technologies for clinical phenotyping. Filling out many questionnaires may be a strain for the patients and therefore costly. In this work, we propose COBALT -- a cost-based layer selector model for detecting phenotypes using a community detection approach. Our goal is to minimize the number of features used to build these phenotypes while preserving its quality. We test our model using questionnaire data from chronic tinnitus patients and represent the data in a multi-layer network structure. The model is then evaluated by predicting post-treatment data using baseline features (age, gender, and pre-treatment data) as well as the identified phenotypes as a feature. For some post-treatment variables, predictors using phenotypes from COBALT as features outperformed those using phenotypes detected by traditional clustering methods. Moreover, using phenotype data to predict post-treatment data proved beneficial in comparison with predictors that were solely trained with baseline features.