论文标题
带有用于跟踪波动目标的振幅的混合标记的多晶状体滤波器
A Hybrid Labeled Multi-Bernoulli Filter With Amplitude For Tracking Fluctuating Targets
论文作者
论文摘要
目标回报的幅度信息已纳入许多跟踪算法以进行性能改进。采用振幅特征的局限性之一是目标的信噪比(SNR),即振幅可能性的参数,通常被认为是已知且恒定的。实际上,目标SNR始终是未知的,并且取决于方面角度,因此它将波动。在本文中,我们提出了一个杂交标记的多伯努利(LMB)滤波器,该滤波器将信号振幅引入LMB滤波器中,以跟踪具有未知和波动的SNR的目标。靶SNR的波动是通过自回归伽马过程进行建模的,并且考虑了旋转1和3目标的振幅可能性。在Rao-Blackwell分解下,提出了基于拉普拉斯变换的近似伽马估计量,并提出了马尔可夫链蒙特卡洛方法来估计目标SNR,并通过在目标SNR上调节的高斯混合物滤波器估计运动学态。通过跟踪方案(包括三个交叉目标)分析了所提出的混合过滤器的性能。仿真结果验证了所提出的SNR估计器的功效,并量化了合并多目标跟踪振幅信息的好处。
The amplitude information of target returns has been incorporated into many tracking algorithms for performance improvements. One of the limitations of employing amplitude feature is that the signal-to-noise ratio (SNR) of the target, i.e., the parameter of amplitude likelihood, is usually assumed to be known and constant. In practice, the target SNR is always unknown, and is dependent on aspect angle hence it will fluctuate. In this paper we propose a hybrid labeled multi-Bernoulli (LMB) filter that introduces the signal amplitude into the LMB filter for tracking targets with unknown and fluctuating SNR. The fluctuation of target SNR is modeled by an autoregressive gamma process and amplitude likelihoods for Swerling 1 and 3 targets are considered. Under Rao-Blackwell decomposition, an approximate Gamma estimator based on Laplace transform and Markov Chain Monte Carlo method is proposed to estimate the target SNR, and the kinematic state is estimated by a Gaussian mixture filter conditioned on the target SNR. The performance of the proposed hybrid filter is analyzed via a tracking scenario including three crossing targets. Simulation results verify the efficacy of the proposed SNR estimator and quantify the benefits of incorporating amplitude information for multi-target tracking.