论文标题
关于随机优化中噪声相关性的理论特性
On the Theoretical Properties of Noise Correlation in Stochastic Optimization
论文作者
论文摘要
研究随机噪声的特性以优化复杂的非凸功能,一直是机器学习领域的一个积极研究领域。先前的工作表明,随机梯度下降的噪声通过克服景观中的不良障碍来改善优化。此外,注射人造高斯噪音已成为快速逃脱马鞍点的流行主意。确实,在没有可靠的梯度信息的情况下,噪声用于探索景观,但目前尚不清楚哪种类型的噪声在探索能力方面是最佳的。为了在我们的知识上缩小这一差距,我们基于布朗尼运动的一般类型的连续时间非马克维亚过程,该过程允许相关的过程的增加。这将基于布朗运动(例如Ornstein-Uhlenbeck过程)进行概括。我们演示了如何离散此类过程,从而导致新算法FPGD。该方法是已知算法PGD和抗PGD的概括。我们在理论上和经验上都研究FPGD的特性,表明它具有勘探能力,在某些情况下,它比PGD和抗PGD有利。这些结果为利用噪声用于训练机器学习模型的新颖方式开辟了领域。
Studying the properties of stochastic noise to optimize complex non-convex functions has been an active area of research in the field of machine learning. Prior work has shown that the noise of stochastic gradient descent improves optimization by overcoming undesirable obstacles in the landscape. Moreover, injecting artificial Gaussian noise has become a popular idea to quickly escape saddle points. Indeed, in the absence of reliable gradient information, the noise is used to explore the landscape, but it is unclear what type of noise is optimal in terms of exploration ability. In order to narrow this gap in our knowledge, we study a general type of continuous-time non-Markovian process, based on fractional Brownian motion, that allows for the increments of the process to be correlated. This generalizes processes based on Brownian motion, such as the Ornstein-Uhlenbeck process. We demonstrate how to discretize such processes which gives rise to the new algorithm fPGD. This method is a generalization of the known algorithms PGD and Anti-PGD. We study the properties of fPGD both theoretically and empirically, demonstrating that it possesses exploration abilities that, in some cases, are favorable over PGD and Anti-PGD. These results open the field to novel ways to exploit noise for training machine learning models.