论文标题
数字人头的感知质量评估
Perceptual Quality Assessment for Digital Human Heads
论文作者
论文摘要
在过去的十年中,数字人类吸引了越来越多的研究兴趣,而这些人的代表,渲染和动画已经付出了很大的努力。但是,数字人类的质量评估落后了。因此,为了应对数字人类质量评估问题的挑战,我们提出了第一个针对三维(3D)扫描的数字人头(DHHS)的大规模质量评估数据库。构造的数据库由55个参考DHHS和1,540个扭曲的DHHS以及主观的感知评级组成。然后,提出了一种简单而有效的全参考(FR)基于投影的方法来评估DHHS的视觉质量。预处理的SWIN变压器微小用于分层提取,并将多头注意模块用于特征融合。实验结果表明,所提出的方法在主流FR指标中表现出最先进的性能。该数据库在https://github.com/zzc-1998/dhhqa上发布。
Digital humans are attracting more and more research interest during the last decade, the generation, representation, rendering, and animation of which have been put into large amounts of effort. However, the quality assessment of digital humans has fallen behind. Therefore, to tackle the challenge of digital human quality assessment issues, we propose the first large-scale quality assessment database for three-dimensional (3D) scanned digital human heads (DHHs). The constructed database consists of 55 reference DHHs and 1,540 distorted DHHs along with the subjective perceptual ratings. Then, a simple yet effective full-reference (FR) projection-based method is proposed to evaluate the visual quality of DHHs. The pretrained Swin Transformer tiny is employed for hierarchical feature extraction and the multi-head attention module is utilized for feature fusion. The experimental results reveal that the proposed method exhibits state-of-the-art performance among the mainstream FR metrics. The database is released at https://github.com/zzc-1998/DHHQA.