论文标题
在对抗数据腐败下的在线和分布式均值估计
Robust Online and Distributed Mean Estimation Under Adversarial Data Corruption
论文作者
论文摘要
在存在对抗数据攻击的情况下,我们在在线和分布式方案中研究强大的平均估计。在每个时间步骤中,网络中的每个代理都会收到一个潜在损坏的数据点,其中数据点最初是独立的,并且是随机变量的相同分布的样本。我们建议所有代理商在线和分发算法,以渐近地估计平均值。我们将估计值的错误限制和收敛属性提供给我们算法下的真实均值。基于网络拓扑,我们进一步评估了每个代理商在合并邻居的数据和仅通过本地观察的学习之间的融合率的权衡。
We study robust mean estimation in an online and distributed scenario in the presence of adversarial data attacks. At each time step, each agent in a network receives a potentially corrupted data point, where the data points were originally independent and identically distributed samples of a random variable. We propose online and distributed algorithms for all agents to asymptotically estimate the mean. We provide the error-bound and the convergence properties of the estimates to the true mean under our algorithms. Based on the network topology, we further evaluate each agent's trade-off in convergence rate between incorporating data from neighbors and learning with only local observations.