论文标题

基于对可分离状态的优化的量子瓦斯汀距离

Quantum Wasserstein distance based on an optimization over separable states

论文作者

Tóth, Géza, Pitrik, József

论文摘要

我们定义了量子剂的距离,以使耦合的优化是在双方可分离状态而不是两部分量子状态下进行的,并检查其性质。令人惊讶的是,我们发现自动距离与量子Fisher信息有关。我们提供了与最佳双分离状态相对应的传输图。我们讨论引入的量子剂量距离如何连接到检测量子纠缠的标准。我们定义了差异量,可以通过最大化替换量子状态的最小化,可以从量子瓦斯汀距离获得。我们将结果扩展到一系列普遍的量子Fisher信息量。

We define the quantum Wasserstein distance such that the optimization of the coupling is carried out over bipartite separable states rather than bipartite quantum states in general, and examine its properties. Surprisingly, we find that the self-distance is related to the quantum Fisher information. We present a transport map corresponding to an optimal bipartite separable state. We discuss how the quantum Wasserstein distance introduced is connected to criteria detecting quantum entanglement. We define variance-like quantities that can be obtained from the quantum Wasserstein distance by replacing the minimization over quantum states by a maximization. We extend our results to a family of generalized quantum Fisher information quantities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源