论文标题

超声超声显微镜中的基于分析优化的微泡跟踪

Analytic Optimization-Based Microbubble Tracking in Ultrasound Super-Resolution Microscopy

论文作者

Ashikuzzaman, Md, Helfield, Brandon, Rivaz, Hassan

论文摘要

超声定位显微镜(ULM)是指有希望的医学成像方式,该模式系统地利用了对比增强超声(CEU)的优势,以超过衍射屏障并描绘微血管图。 Microbubbles(MB)的定位和跟踪,ULM的两个重要步骤,分别促进了血管图和速度分布。本文中,我们提出了一种新型的MB跟踪技术,将时间配对作为气泡设置的注册问题。通过分析优化具有位置和点传播函数(PSF)相似性的成本函数,以及在物理上合理的气泡运动中,在两次连续的时间内进行了迭代注册。此外,我们以模糊的方式而不是二进制来推断MBS的奇偶校验。该提出的技术在验证实验中表现良好,其中两个合成数据和两个在超声本地化和跟踪超级分辨率(Ultra-SR)挑战的算法提供的体内数据集。

Ultrasound localization microscopy (ULM) refers to a promising medical imaging modality that systematically leverages the advantages of contrast-enhanced ultrasound (CEUS) to surpass the diffraction barrier and delineate the microvascular map. Localization and tracking of microbubbles (MBs), two significant steps of ULM, facilitate generating the vascular map and the velocity distribution, respectively. Herein, we propose a novel MB tracking technique considering temporal pairing as a bubble-set registration problem. Iterative registration is performed between the bubble sets in two consecutive time instants by analytically optimizing a cost function that takes position and point-spread function (PSF) similarities as well as physically plausible levels of bubbles' movement into account. Furthermore, we infer MBs' parity in a fuzzy manner instead of binary. The proposed technique performs well in validation experiments with two synthetic and two in vivo datasets provided by the Ultrasound Localisation and TRacking Algorithms for Super Resolution (ULTRA-SR) Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源