论文标题

在向前线性阈值等级上使用阈值

Playing with Thresholds on the Forward Linear Threshold Rank

论文作者

Blesa, Maria J., Serna, Maria

论文摘要

社交网络是传播信息和影响力的自然空间,并已成为媒体本身。已经提出了几种捕获扩散过程的模型,其中大多数基于独立的级联模型或线性阈值(LT)模型。 IC模型是概率的,而LT模型则依赖于演员的知识要说服,以相关的个体阈值反映。 尽管基于LT的模型考虑了网络中每个参与者的个体阈值,但迄今为止现有的研究始终认为所有参与者的阈值0.5(即简单的多数激活标准)。 这项工作的主要目标是开始研究网络信息的传播时如何行事,当我们考虑设置这些阈值的其他选项以及有多少网络参与者最终受到这种传播影响。为此,我们考虑了基于LT模型,即正线性阈值(FLTR)的最近引入的中心度度量。我们通过实验分析了几个网络的排名属性,其中影响力阈值遵循不同的方案。在这里,我们考虑了三种不同的方案:(1)统一,其中所有玩家都具有相同的价值; (2)随机,每个玩家都被分配一个阈值U.A.R.在规定的间隔中; (3)由另一个中心度对参与者的价值确定。我们的结果表明,选择对排名有明显的影响,在某些情况下甚至是非常重要的和突然的。我们得出的结论是,社交网络的排名是为单个阈值提供最佳任务是Pagerank和fltr。

Social networks are the natural space for the spreading of information and influence and have become a media themselves. Several models capturing that diffusion process have been proposed, most of them based on the Independent Cascade (IC) model or on the Linear Threshold (LT) model. The IC model is probabilistic while the LT model relies on the knowledge of an actor to be convinced, reflected in an associated individual threshold. Although the LT-based models contemplate an individual threshold for each actor in the network, the existing studies so far have always considered a threshold of 0.5 equal in all actors (i.e., a simple majority activation criterion). Our main objective in this work is to start the study on how the dissemination of information on networks behaves when we consider other options for setting those thresholds and how many network actors end up being influenced by this dissemination. For doing so, we consider a recently introduced centrality measure based on the LT model, the Forward Linear Threshold Rank (FLTR). We analyze experimentally the ranking properties for several networks in which the influence resistance threshold follows different schemes. Here we consider three different schemes: (1) uniform, in which all players have the same value; (2) random, where each player is assigned a threshold u.a.r. in a prescribed interval; and (3) determined by the value of another centrality measure on the actor. Our results show that the selection has a clear impact on the ranking, even quite significant and abrupt in some cases. We conclude that the social networks ranks that provide the best assignments for the individual thresholds are PageRank and FLTR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源