论文标题
在洛伦兹违规和黑暗的非标准互动的情况下,探测中微子混合的非军事
Probing non-unitarity of neutrino mixing in the scenario of Lorentz violation and dark nonstandard interaction
论文作者
论文摘要
中微子风味振荡是超出标准模型的新物理学存在的主要迹象之一。小型中微子质量的存在是必不可少的,以阐明中微子不同风味之间的振荡。通过与标准模型费米子一起添加右手中性的Lepton,可以产生微小的中微子质量。这种额外的费用可能会导致非军事的$ 3 \ times 3 $ pmns混合矩阵,从而影响了时空中中微子的传播。在这项工作中,在存在两个新的物理场景,洛伦兹违规和黑暗的非标准相互作用的情况下,在中微子振荡中分析了非单身混合矩阵的效果。洛伦兹对称性违规主要出现在普朗克量表上,这也可以在较低的能级中表现出来。另一方面,由于中微子与环境暗物质的相互作用与中微子质量的扰动校正有助于,因此出现了深色非标准相互作用。在此分析中,考虑到长长的基线沙丘和短基线Daya湾实验设置的背景下,考虑了洛伦兹违规和黑暗NSI的情况,进行了单一和非单身混合矩阵的比较研究。在沙丘和Daya湾都可以观察到黑暗非标准相互作用的标志,分别以较大的中微子存活率和振荡概率而建立,这可能是Daya Bay实验中在$ \ sim5 $ MEV上观察到的多余通量的可能解释。仅在短基线Daya Bay实验中也可以观察到违反洛伦兹的签名。
Neutrino flavour oscillation is one of the primary indication of the existence of new physics beyond standard model. The presence of small neutrino mass is indispensable to explicate the oscillation among different flavours of neutrino. By the addition of a right handed neutral lepton with the standard model fermions, it is possible to generate tiny neutrino mass. Such additional fermion may induce non-unitarity to the $3\times 3$ PMNS mixing matrix which influences the propagation of neutrino in space-time. In this work the effect of non-unitary mixing matrix is analyzed in neutrino oscillation in presence of two new physics scenarios, Lorentz violation and dark non-standard interaction. Lorentz symmetry violation mainly appears at the Planck scale, which may also be manifested at a lower energy level. On the other hand, dark non standard interaction arises due to the interaction of neutrino with the environmental dark matter which contributes as a perturbative correction to the neutrino mass. In this analysis, the comparative study of unitary and non-unitary mixing matrix is carried out considering the scenario of Lorentz violation and dark NSI in the context of long baseline DUNE and short baseline Daya Bay experimental set up. The signature of dark nonstandard interaction is observable in both DUNE and Daya Bay set up in terms of large value of neutrino survival and oscillation probability respectively and is a possible explanation for the excess flux observed at $\sim5$ MeV in Daya Bay experiment. The signature of Lorentz violation is also possible to be observed in the short baseline Daya Bay experiment only.