论文标题
与最佳自相关的偶数长度的交错的四级序列的4-辅助复杂性
The 4-Adic Complexity of Interleaved Quaternary Sequences of Even Length with Optimal Autocorrelation
论文作者
论文摘要
Su等。提出了几类新的偶数序列,具有最佳自相关的偶数序列,由双序序列对,GMW序列对或二进制循环序列序列,或在\ cite {s1}中的二进制循环序列。在本文中,我们通过使用相关函数和有限字段$ \ mathbb {f} _n $在$ \ mathbb {z}^$} $ proude中确定了这些第四纪序列的4个序列的4次复杂性,并使用相关函数和第四订单和“ Quadratic Gauss Sums”的“高达期间”和“ Quadratic Gauss Sums”的“高达期间”和“ Quadratic Gauss Sums”确定,并以$ \ Mathbb {z}^$ proud为$)。我们的结果表明,它们足够安全,可以抵抗理性近似算法的攻击。
Su et al. proposed several new classes of quaternary sequences of even length with optimal autocorrelation interleaved by twin-prime sequences pairs, GMW sequences pairs or binary cyclotomic sequences of order four in \cite{S1}. In this paper, we determine the 4-adic complexity of these quaternary sequences with period $2n$ by using correlation function and the "Gauss periods" of order four and "quadratic Gauss sums" on finite field $\mathbb{F}_n$ and valued in $\mathbb{Z}^{*}_{4^{2n}-1}$. Our results show that they are safe enough to resist the attack of the rational approximation algorithm.