论文标题

KXNET:模型驱动的深层神经网络,用于盲目的超级分辨率

KXNet: A Model-Driven Deep Neural Network for Blind Super-Resolution

论文作者

Fu, Jiahong, Wang, Hong, Xie, Qi, Zhao, Qian, Meng, Deyu, Xu, Zongben

论文摘要

尽管当前基于深度学习的方法在盲目的单图像超分辨率(SISR)任务中获得了有希望的表现,但大多数主要集中在启发式上构建各种网络体系结构,并更少强调对Blur内核和高分辨率(HR)图像之间物理生成机制的明确嵌入。为了减轻此问题,我们提出了一个模型驱动的深神经网络,称为blind SISR。具体来说,为了解决经典的SISR模型,我们提出了一种简单的效果迭代算法。然后,通过将所涉及的迭代步骤展开到相应的网络模块中,我们自然构建了KXNET。所提出的KXNET的主要特异性是整个学习过程与此SISR任务的固有物理机制完全融合在一起。因此,学到的模糊内核具有清晰的物理模式,并且模糊内核和HR图像之间的相互迭代过程可以很好地指导kxnet以正确的方向发展。关于合成和真实数据的广泛实验很好地证明了我们方法的卓越准确性和一般性超出了当前代表性的最先进的盲目SISR方法。代码可在以下网址提供:https://github.com/jiahong-fu/kxnet。

Although current deep learning-based methods have gained promising performance in the blind single image super-resolution (SISR) task, most of them mainly focus on heuristically constructing diverse network architectures and put less emphasis on the explicit embedding of the physical generation mechanism between blur kernels and high-resolution (HR) images. To alleviate this issue, we propose a model-driven deep neural network, called KXNet, for blind SISR. Specifically, to solve the classical SISR model, we propose a simple-yet-effective iterative algorithm. Then by unfolding the involved iterative steps into the corresponding network module, we naturally construct the KXNet. The main specificity of the proposed KXNet is that the entire learning process is fully and explicitly integrated with the inherent physical mechanism underlying this SISR task. Thus, the learned blur kernel has clear physical patterns and the mutually iterative process between blur kernel and HR image can soundly guide the KXNet to be evolved in the right direction. Extensive experiments on synthetic and real data finely demonstrate the superior accuracy and generality of our method beyond the current representative state-of-the-art blind SISR methods. Code is available at: https://github.com/jiahong-fu/KXNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源