论文标题
仪器差异差异的结构平均模型
Structural mean models for instrumented difference-in-differences
论文作者
论文摘要
在标准差异研究设计中,当曝光趋势与结果趋势之间的关系与未衡量的混杂因素混淆时,可能会违反平行趋势假设。如果有一个外源变量,(i)不会直接影响结果平均值的变化(即结果趋势),则可以取得进展,除非通过影响暴露平均值的变化(即暴露趋势),并且(ii)与未衡量的暴露曝光 - 结果混淆者无关。这种外源变量称为差异差异的仪器。为了进行线性建模的连续结果,已经提出了所谓的仪器差异方法。在本文中,我们将建议使用仪器差异的新型乘法结构均值模型,这使得人们可以识别并估算整个人群或经过处理的稀有二元结果的平均治疗效果,并且可以使用有效的差异差异工具。我们讨论了这些模型的可识别性,然后开发有效的半参数估计方法,以允许使用柔性,数据自适应或机器学习方法来估计滋扰参数。我们将有关医疗保健数据的建议应用于与二甲甲素治疗相比,在甲氟脲治疗下,在抗血糖药物的新用户中,调查中度至重量体重增加的风险。
In the standard difference-in-differences research design, the parallel trends assumption may be violated when the relationship between the exposure trend and the outcome trend is confounded by unmeasured confounders. Progress can be made if there is an exogenous variable that (i) does not directly influence the change in outcome means (i.e. the outcome trend) except through influencing the change in exposure means (i.e. the exposure trend), and (ii) is not related to the unmeasured exposure - outcome confounders on the trend scale. Such exogenous variable is called an instrument for difference-in-differences. For continuous outcomes that lend themselves to linear modelling, so-called instrumented difference-in-differences methods have been proposed. In this paper, we will suggest novel multiplicative structural mean models for instrumented difference-in-differences, which allow one to identify and estimate the average treatment effect on count and rare binary outcomes, in the whole population or among the treated, when a valid instrument for difference-in-differences is available. We discuss the identifiability of these models, then develop efficient semi-parametric estimation approaches that allow the use of flexible, data-adaptive or machine learning methods to estimate the nuisance parameters. We apply our proposal on health care data to investigate the risk of moderate to severe weight gain under sulfonylurea treatment compared to metformin treatment, among new users of antihyperglycemic drugs.